Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Investigating Gulf Coast Aquifer System: Stratigraphy Reconstruction, Inverse Modeling, And Groundwater Stress Assessment, Shuo Yang Mar 2024

Investigating Gulf Coast Aquifer System: Stratigraphy Reconstruction, Inverse Modeling, And Groundwater Stress Assessment, Shuo Yang

LSU Doctoral Dissertations

The Mississippi Embayment aquifer system (MEAS) and the Coastal Lowlands aquifer system (CLAS) provide substantial groundwater resources for human activities in the U.S. Gulf Coastal Plain. However, the overexploitation has led to groundwater depletion in the MEAS and the CLAS, threatening sustainable groundwater use. Such concern highlights the crucial need for an advanced understanding of stratigraphy and groundwater in these aquifer systems, which is essential for effective regional groundwater management. This dissertation presents a comprehensive investigation of MEAS and CLAS in the Louisiana and southwestern Mississippi region, encompassing three fundamental dimensions: stratigraphy reconstruction, groundwater modeling, and groundwater stress assessments. A …


Model Development To Assess Groundwater Flooding And Levee Underseepage In New Orleans, Louisiana, Shuo Yang Mar 2020

Model Development To Assess Groundwater Flooding And Levee Underseepage In New Orleans, Louisiana, Shuo Yang

LSU Master's Theses

Flooding is a major threat to New Orleans due to its geographic location and geologic condition. However, potential groundwater flooding is seldom studied and poorly understood even though groundwater level is expected high in the city. High groundwater level might result in groundwater flooding in low-lying areas. High uplift pore water pressures may cause strong underseepage and risk levee safety. The objective of this study is to assess the impacts of hydrogeology on groundwater flooding and evaluate potential underseepage-induced hazards along levees in New Orleans. In this study, a groundwater flow model development which involves stratigraphy modeling, groundwater flow model …


Investigation Of Subsurface Stratigraphy And Groundwater Dynamics In The Mississippi River Delta, An Li Oct 2019

Investigation Of Subsurface Stratigraphy And Groundwater Dynamics In The Mississippi River Delta, An Li

LSU Doctoral Dissertations

The Mississippi River Delta (MRD) is socioeconomically important to the state of Louisiana and the United States. Various types of land-water system data have been collected in the MRD. However, very few efforts have been made to utilize these datasets in modeling regional stratigraphy and groundwater dynamics in the MRD, especially for the upper 50 m of the depth. In this interval of depth, the Mississippi River and surrounding interdistributary bays intensively interact with the groundwater system. The lack of knowledge in regional stratigraphy and groundwater dynamics hinder an understanding of how hydrogeological setting affects processes such as surface-groundwater interaction, …


Self-Healing Microcapsules As Concrete Aggregates For Corrosion Inhibition In Reinforced Concrete, Homero Castaneda, Marwa Hassan, Miladin Radovic, Jose Milla Dec 2018

Self-Healing Microcapsules As Concrete Aggregates For Corrosion Inhibition In Reinforced Concrete, Homero Castaneda, Marwa Hassan, Miladin Radovic, Jose Milla

Data

Corresponding data set for Tran-SET Project No. 17CLSU08. Abstract of the final report is stated below for reference:

"Reinforced Concrete (RC) structures are vital to the US’s civil infrastructure for their strength and versatility. Unfortunately, RC elements deteriorate rapidly when exposed to corrosive environments. One possible solution is to extend the life of RC elements and systems using microencapsulated corrosion inhibitors to reduce the rebar corrosion rate. The capsules house an anodic corrosion inhibitor agent including calcium nitrate (CN) and triethanolamine (TEA). The integration of such microencapsulated materials will enhance the durability and extend the useful life by controlling the …


Self-Healing Microcapsules As Concrete Aggregates For Corrosion Inhibition In Reinforced Concrete, Homero Castaneda, Marwa Hassan, Miladin Radovic, Jose Milla Nov 2018

Self-Healing Microcapsules As Concrete Aggregates For Corrosion Inhibition In Reinforced Concrete, Homero Castaneda, Marwa Hassan, Miladin Radovic, Jose Milla

Publications

Reinforced Concrete (RC) structures are vital to the US’s civil infrastructure for their strength and versatility. Unfortunately, RC elements deteriorate rapidly when exposed to corrosive environments. One possible solution is to extend the life of RC elements and systems using microencapsulated corrosion inhibitors to reduce the rebar corrosion rate. The capsules house an anodic corrosion inhibitor agent including calcium nitrate (CN) and triethanolamine (TEA). The integration of such microencapsulated materials will enhance the durability and extend the useful life by controlling the corrosion precursors and the corrosion process during damage evolution. Therefore, this work aims to develop and characterize the …


Resampling Methods And Visualization Tools For Computer Performance Comparisons In The Presence Of Performance Variation, Samuel Oridge Irving Apr 2018

Resampling Methods And Visualization Tools For Computer Performance Comparisons In The Presence Of Performance Variation, Samuel Oridge Irving

LSU Master's Theses

Performance variability, stemming from non-deterministic hardware and software behaviors or deterministic behaviors such as measurement bias, is a well-known phenomenon of computer systems which increases the difficulty of comparing computer performance metrics and is slated to become even more of a concern as interest in Big Data Analytics increases. Conventional methods use various measures (such as geometric mean) to quantify the performance of different benchmarks to compare computers without considering this variability which may lead to wrong conclusions. In this paper, we propose three resampling methods for performance evaluation and comparison: a randomization test for a general performance comparison between …


Modeling Of Two Dimensional Graphene And Non-Graphene Material Based Tunnel Field Effect Transistors For Integrated Circuit Design, Md Shamiul Fahad Jan 2017

Modeling Of Two Dimensional Graphene And Non-Graphene Material Based Tunnel Field Effect Transistors For Integrated Circuit Design, Md Shamiul Fahad

LSU Doctoral Dissertations

The Moore’s law of scaling of metal oxide semiconductor field effect transistor (MOSFET) had been a driving force toward the unprecedented advancement in development of integrated circuit over the last five decades. As the technology scales down to 7 nm node and below following the Moore’s law, conventional MOSFETs are becoming more vulnerable to extremely high off-state leakage current exhibiting a tremendous amount of standby power dissipation. Moreover, the fundamental physical limit of MOSFET of 60 mV/decade subthreshold slope exacerbates the situation further requiring current transport mechanism other than drift and diffusion for the operation of transistors. One way to …


Quantitative Estimation Of Causality And Predictive Modeling For Precipitation Observation Sites And River Gage Sensors, Tri Vu Nguyen Jan 2017

Quantitative Estimation Of Causality And Predictive Modeling For Precipitation Observation Sites And River Gage Sensors, Tri Vu Nguyen

LSU Master's Theses

This project seeks to investigate two questions: correlations from precipitation measurement sensors to river gage sensors, and predictive modeling of peak river gage heights during precipitation events. First, if correlations can be quantified, then a predictive model can be explored to predict peak water levels at river gage sensors, in response to precipitation inputs. Answering both research questions can provide early flood detection benefits and provide quantitative time assessments for flood risks. An extensive data-driven study was conducted across a geographical area of the U.S, spanning the time period 2008-2016 to identify river gage sensors that are closely correlated to …


Hydrodynamic Simulations Of The Prototype Mississippi River And Expanded Small-Scale Physical Model To Investigate Impact Of Sea Level Rise, Linsey Brooke Olivier Jan 2016

Hydrodynamic Simulations Of The Prototype Mississippi River And Expanded Small-Scale Physical Model To Investigate Impact Of Sea Level Rise, Linsey Brooke Olivier

LSU Master's Theses

The Expanded Small-Scale Physical Model (ESSPM) is a distorted-scale, moveable bed model that will complement numerical and field studies studying management strategies in the lower ~140 miles of the Mississippi River and their effect on flooding, navigation and coastal restoration. It is recognized that relative sea level rise (RSLR), the combination of eustatic sea level rise (ESLR) and subsidence, will have an impact on the hydraulics and sediment transport in the lower River. However, it is physically impossible to replicate subsidence in the ESSPM; thus, future RSLR conditions will be experimentally simulated by raising Gulf of Mexico (GoM) levels commensurate …


Modeling Churn And Annular Flow Regimes In Vertical And Near-Vertical Pipes With Small And Large Diameters, Erika Viana Pagan Jan 2016

Modeling Churn And Annular Flow Regimes In Vertical And Near-Vertical Pipes With Small And Large Diameters, Erika Viana Pagan

LSU Master's Theses

This thesis presents an improved model for gas-liquid two-phase flow in churn and annular flow regimes for small- and large-diameter in vertical and near-vertical pipes. This new model assumes that a net liquid film moves upward along the pipe wall and gas phase moves upward, occupying the majority of the central part of the pipes, and forming a gas core, in both flow regimes. The model is validated using field and laboratory experimental data from several different studies from the literature, in terms of pressure along the wellbore or bottomhole pressure for field conditions (for high-pressure flows in long pipes, …


The Effects Of Asymmetric Micro Ratchets On Pool Boiling Performance, Lance Austin Brumfield Jan 2014

The Effects Of Asymmetric Micro Ratchets On Pool Boiling Performance, Lance Austin Brumfield

LSU Doctoral Dissertations

Nucleate boiling is an attractive method for achieving high heat flux at low superheat temperatures. It is frequently used for industrial applications such as heat exchangers and is being considered to cool advanced central processing units (CPU) which produce heat fluxes on the order of 1 MW/m2 and are becoming increasingly less efficient to cool via forced conduction of air. The issue with implementing nucleate boiling as a cooling mechanism lies in the difficulty of quantifying the numerous and complex mechanisms which control the process. A comprehensive nucleate boiling model has yet to be formulated and will be required in …


A New Diagnostics Tool For Water Injected Gas Turbines - Emissions Monitoring And Modeling, Mohammed Shafi Syed Jan 2013

A New Diagnostics Tool For Water Injected Gas Turbines - Emissions Monitoring And Modeling, Mohammed Shafi Syed

LSU Doctoral Dissertations

Natural gas-fired cogeneration systems are commonly used for large-scale industrial energy production – both electricity generation and heat recovery. Industrial cogeneration currently represents about 8% of the U.S. total electricity generation capacity. Plans call for cogeneration to increase to 20% of the generation capacity by the end of 2030 [1, 2]. Industrial cogeneration systems attain both high thermal efficiency and low emissions. The attainment of low emissions from natural gas fired turbines, in particular low NOx emissions, is of considerable environmental importance especially as coal becomes a less favorable fuel source. Our current project addresses emissions and performance modeling of …


A Thermodynamic Framework For The Modeling And Optimization Of Crystallization Processes, David John Widenski Jan 2012

A Thermodynamic Framework For The Modeling And Optimization Of Crystallization Processes, David John Widenski

LSU Doctoral Dissertations

Crystallization is a widely used chemical engineering separation unit operation process. Since this technique can produce high purity products it is used for the industrial production of many chemical compounds, such as pharmaceuticals, agrochemicals, and fine chemicals. The production of these products is a multi-million dollar industry. Any methods to improve the production of these products would be highly valued. Thus, the main objective of this work is to target model-based optimal strategies for crystallization operations specifically targeting crystal size and crystal size distribution (CSD). In particular, take the knowledge gained and translate it into an economically and practically feasible …


Dynamic Characterization Of Vocal Fold Virbrations, Zhenyi Wei Jan 2012

Dynamic Characterization Of Vocal Fold Virbrations, Zhenyi Wei

LSU Doctoral Dissertations

An emerging trend among voice specialists is the use of quantitative protocols for the diagnosis and treatment of voice disorders. Vocal fold vibrations are directly related to voice quality. This research is devoted to providing an objective means of characterizing these vibrations. Our goal is to develop a dynamic model of vocal fold vibration, and map the parameter space of the model to a class of voice disorders; thus, furthering the assessment and diagnosis of voice disorder in clinical settings.

To this end, this dissertation introduces a new seven-mass biomechanical model for the vibration of vocal folds. The model is …


Hydrodynamic Modeling Of San Elijo Lagoon, California, Mary Elizabeth Nee Friedmann Bourgoyne Jan 2010

Hydrodynamic Modeling Of San Elijo Lagoon, California, Mary Elizabeth Nee Friedmann Bourgoyne

LSU Master's Theses

Decisions on where to concentrate management efforts need to be guided by an ability to accurately simulate and predict physical and ecological changes. Many restoration projects experience difficulties due to a lack of understanding of the ecological response and evolution of wetland systems (Goodwin et al., 2001). There are several approaches that can be taken in analyzing a system. The appropriate selection should be based on the available data, the spatial scale of the wetland, and the physical processes governing the system (Goodwin and Kamman, 2001). Predictive tools are essential for good long-term management (Goodwin et al., 2001). The objective …


Physical Modeling Of Flow And Sediment Transport Using Distorted Scale Modeling, Ryan L. Waldron Jan 2008

Physical Modeling Of Flow And Sediment Transport Using Distorted Scale Modeling, Ryan L. Waldron

LSU Master's Theses

As coastal Louisiana's land loss problem continues to grow unabated, many different solutions have been proposed. One such solution is the concept of diverting fresh water and sediment from the river into the coastal wetlands. Louisiana State University has a Small Scale Physical Model (SSPM) for the study of the potential of such diversions; it is deisgned to study the bulk movement of sediment in the river and diversions. The model is a distorted scale model with a horizontal scale of 1:12,000 and a vertical scale of 1:500; this extreme distortion has brought into question the applicability of the model. …


Cluster Kinetics Modeling Of Glassforming Materials, Lisa Ann Brenskelle Jan 2008

Cluster Kinetics Modeling Of Glassforming Materials, Lisa Ann Brenskelle

LSU Doctoral Dissertations

In this work, a new model relating temperature and pressure to dielectric relaxation or viscosity of a glassformer is developed. The model is based upon cluster kinetics, reaction-like mechanisms describing interactions between glassformer monomers and their clusters. Mathematical solutions of population balance equations for monomer and cluster lead to molar concentrations in terms of rate coefficients of the reaction-like mechanisms. These are then related to viscosity or dielectric relaxation time through free volume theory. The resulting equations are tested against data for a variety of pure glassformers, fragile, non-fragile, large, and small molecules over a wide range of temperatures, pressures, …


Fate And Transport Of Microorganisms In Coastal Subsurface-Experiment And Modeling, Haibo Cao Jan 2008

Fate And Transport Of Microorganisms In Coastal Subsurface-Experiment And Modeling, Haibo Cao

LSU Doctoral Dissertations

The objective of this dissertation was to investigate the fate and transport of microorganisms in coastal subsurface. Two topics were studied: (1) evaluation of the performance of the Marshland Upwelling System (MUS) in removing fecal bacteria and the background recovery after it is shut down; (2) Investigation of the effects of salinity and soluble organic matter (SOM) on sorption of MS-2 and development of a model to describe the sorption and transport process. The MUS showed effective performance in removing fecal bacteria during its 32 month operation period at Bayou Segnette Site. The removal efficiency was increased with its operation …


Experimental And Modeling Studies Of Contaminant Transport In Capped Sediments During Gas Bubble Ebullition, Qingzhong Yuan Jan 2007

Experimental And Modeling Studies Of Contaminant Transport In Capped Sediments During Gas Bubble Ebullition, Qingzhong Yuan

LSU Doctoral Dissertations

Fluxes of the three organics and eighteen metals from sediments were measured with diffusion chambers, and the effectiveness of a sand cap ascertained. The influence of sediment consolidation on contaminant flux and the mass transfer coefficient at the sediment-water interface was studied. A two-layer diffusion-advection model and consolidation model were coupled to elucidate the effect of sediment consolidation on chemical transport in the sediment-cap system. The model was tested and verified by the experimental data from microcosms, and then was used to predict phenanthrene flux under field conditions. The simulation results showed that consolidation could accelerate phenanthrene breakthrough and enhance …


Turbulence Modeling For Film Cooling Flows, Asif Hoda Jan 2007

Turbulence Modeling For Film Cooling Flows, Asif Hoda

LSU Doctoral Dissertations

An improved two equation turbulence model has been developed in this dissertation to better predict the complex film cooling flow field that is formed from the interaction of a coolant jet and a crossflow over a modeled turbine blade surface. Film cooling of turbine blades is commonly employed to effectively protect turbine blades from thermal failure and thereby to allow higher inlet temperatures in order to increase the efficiency of gas turbine engines. Film cooling involves the injection of rows of coolant jets from slots on the surface of a turbine blade which is then bent over by the crossflow …


Performance Modeling Of Explosively Actuated Devices, Adam M. Braud Jan 2006

Performance Modeling Of Explosively Actuated Devices, Adam M. Braud

LSU Master's Theses

Explosively actuated devices (pin pullers, cable cutters, valves, etc) are used extensively to perform critical functions for aerospace, industrial, and defense related applications. The failure of these devices have led to a greater effort to quantify device design and performance. This thesis describes the actuation process of an explosively actuated valve, including: 1) the burning of the solid explosive HMX (C4H8N8O8) and production of its high pressure gas products, 2) the mass transfer of gas products through an actuator to an expansion volume including choked flow effects, 3) the resulting piston motion …


Modeling The Fate And Transport Of Chlorinated Benzenes In Baton Rouge Bayou, Sudheer Nimmagadda Jan 2005

Modeling The Fate And Transport Of Chlorinated Benzenes In Baton Rouge Bayou, Sudheer Nimmagadda

LSU Master's Theses

Knowledge of the fate and transport of chlorinated benzenes is necessary at certain sites for effective remediation of contaminated soils using plants. Current research is examining the capability of wetland plants to catalyze degradation or attenuate migration, but again requires knowledge of the uptake of contaminants from an aqueous environment. A two stage model was used to estimate the rate of uptake of contaminants from sediments. The first stage of the model predicts pollutant leaching rates from sediments to the overlying water, which would then be fed into the plant or bioreactor model systems. In this study the flux from …


Electrodeposition Of Feconicu Quaternary System, Qiang Huang Jan 2004

Electrodeposition Of Feconicu Quaternary System, Qiang Huang

LSU Doctoral Dissertations

Electrodeposition is a cost-effective method to produce thin film materials, which have been used widely in the microelectronic industry, and is advantageous to fabricate metal deposits into recessed and curved areas. In this dissertation, FeCoNiCu quaternary alloy system was investigated, both experimentally and theoretically, for fabrication of multilayers, grating structures, and nanowires. Multilayer structures are composed of alternating ferromagnetic and nonmagnetic nanometric layers, and are of interest due to the giant magnetoresistance (GMR) property it possesses, a change in electric resistance in the presence of an external magnetic field. In addition, the compositional modulation, or the composition contrast, in multilayer …


Modeling A Mississippi River Diversion Into A Louisiana Wetland, Stephan Alexander Capps Jan 2003

Modeling A Mississippi River Diversion Into A Louisiana Wetland, Stephan Alexander Capps

LSU Master's Theses

Wetland loss has significant impacts. Numerous loss mechanisms have been hypothesized, and a greater number of solutions have been proposed. One proposed solution is to divert river water into a degraded area with the intent of increasing sedimentation, introducing nutrients, and/or decreasing salinity within the wetland. However, wetland hydraulics and hydrology are complex processes and any hydrologic modification may result in unintended consequences. Predicting these consequences can be problematic due to the complexity and difficulty associated with proper modeling of the hydraulics and topography. The primary objective of this study is to evaluate the suitability of established one- and two-dimensional …


Heat Transfer In Outdoor Aquaculture Ponds, Jonathan Lamoureux Jan 2003

Heat Transfer In Outdoor Aquaculture Ponds, Jonathan Lamoureux

LSU Master's Theses

An energy balance was developed for heated and unheated earthen aquaculture ponds to 1) determine the relative importance of energy transfer mechanism affecting pond temperature; 2) predict pond temperatures; 3) estimate the energy required to control pond temperatures, and 4) recommend efficient heating and cooling methods. PHATR (Pond Heating and Temperature Regulation), a computer program using 4th order Runge-Kutta numerical method was developed to solve the energy balance using weather, flow rate and pond temperature data. By comparing measured and modeled pond temperatures, the average difference (the average bias) was 0.5°C for unheated ponds and 2.4°C for heated ponds. The …