Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Inhomogeneous Degradation Of Polymer Electrolyte Membrane In Pem Fuel Cells, Xinyu Huang, Wonseok Yoon Jan 2009

Inhomogeneous Degradation Of Polymer Electrolyte Membrane In Pem Fuel Cells, Xinyu Huang, Wonseok Yoon

Faculty Publications

Membrane durability is one of the technical barriers for the commercialization of polymer electrolyte membrane (PEM) fuel cells. Membrane embrittlement (a form of mechanical weakening) can lead to the frequently observed “sudden death” behavior of PEM fuel cells. It is the objective of this study to explore the fundamental mechanisms of the mechanical weakening of perfluorosulfonic acid (PFSA) based electrolyte membranes during the accelerated degradation test.


Electrochemical Removal Of Carbon Monoxide In Reformate Hydrogen For Fueling Proton Exchange Membrane Fuel Cells, Sivagaminathan Balasubramanian, Charles E. Holland, John W. Weidner Jan 2009

Electrochemical Removal Of Carbon Monoxide In Reformate Hydrogen For Fueling Proton Exchange Membrane Fuel Cells, Sivagaminathan Balasubramanian, Charles E. Holland, John W. Weidner

Faculty Publications

A twin-cell electrochemical filter is demonstrated to reduce the CO concentration in reformate hydrogen. In this design, the potential and gas flow are switched between the two filter cells so that alternative CO adsorption and oxidation occur in each cell while providing a continuous flow of H2 to a fuel cell. The effects of filter switching time and applied potential on the CO concentration of gas exiting the filter are presented here for a CO concentration of 1000 ppm in nitrogen flowing at 100 cm3/min. The parasitic loss of hydrogen from a corresponding reformate stream was estimated to be 1.5%.


Effect Of Water Transport On The Production Of Hydrogen And Sulfuric Acid In A Pem Electrolyzer, John A. Staser, John W. Weidner Jan 2009

Effect Of Water Transport On The Production Of Hydrogen And Sulfuric Acid In A Pem Electrolyzer, John A. Staser, John W. Weidner

Faculty Publications

The thermochemical cycle involving the interconversion between sulfur dioxide and sulfuric acid is a promising method for efficient, large-scale production of hydrogen. A key step in the process is the oxidation of sulfur dioxide to sulfuric acid in an electrolyzer. Gaseous SO2 fed to a proton exchange membrane (PEM) electrolyzer was previously investigated and was shown to be a promising system for the electrolysis step. A critical factor in the performance of this gas-fed electrolyzer is the management of water since it: (i) is needed as a reactant, (ii) determines the product sulfuric acid concentration, …


Sulfur Dioxide Crossover During The Production Of Hydrogen And Sulfuric Acid In A Pem Electrolyzer, John A. Staser, John W. Weidner Jan 2009

Sulfur Dioxide Crossover During The Production Of Hydrogen And Sulfuric Acid In A Pem Electrolyzer, John A. Staser, John W. Weidner

Faculty Publications

A proton exchange membrane (PEM) electrolyzer has been investigated as a viable system for the electrolysis step in the thermochemical conversion of sulfur dioxide to sulfuric acid for the large-scale production of hydrogen. Unfortunately, during operation, sulfur dioxide can diffuse from the anode to the cathode. This has several negative effects, including reduction to sulfur that could potentially damage the electrode, consumption of current that would otherwise be used for the production of hydrogen, introduction of oxygen and SO2 to the hydrogen stream, and loss of sulfur to the cycle. However, proper water management can reduce or eliminate the …