Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill Jul 2022

Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set consists of an overview presentation (PDF-formatted) file and companion video (MP4) and CADD files (DWG & DXF) for laser cutting the ETSU-developed alternate top bracing designs and marking templates for the STEM Guitar Project’s BBT (OM-sized) standard acoustic guitar kit. The three (3) alternative BBT top bracing designs in this release are
(a) a one-piece base for the standard kit's (Martin-style) bracing,
(b) 277 Ladder-style bracing, and
(c) an X-braced fan-style bracing similar to traditional European or so-called 'classical' acoustic guitars.

The CADD data set for each of the three (3) top bracing designs includes …


Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam Jan 2013

Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam

Truong X Nghiem

In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the …


Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam Oct 2012

Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam

Madhur Behl

In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the …


Green Scheduling For Radiant Systems In Buildings, Truong Nghiem, Madhur Behl, George Pappas, Rahul Mangharam Oct 2012

Green Scheduling For Radiant Systems In Buildings, Truong Nghiem, Madhur Behl, George Pappas, Rahul Mangharam

Rahul Mangharam

In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the …


Phase Change Materials For Thermal Regulation Of Building Integrated Photovoltaics, Ahmad Hassan Jan 2010

Phase Change Materials For Thermal Regulation Of Building Integrated Photovoltaics, Ahmad Hassan

Doctoral

In outdoor deployed photovoltaics (PV), standard test conditions (STC) of 25 °C PV temperature, 1000 Wm-2 solar radiation intensity and 1.5 air-mass rarely prevail. PV temperature can rise 40-100 °C above STC inducing a power drop in crystalline silicon PV with a coefficient of -0.4 to -0.65 %/K above STC. Increased operating temperature also results in accelerated PV degradation due to cell delamination allowing moisture ingress. vConventional building integrated photovoltaics (BIPV) cooling techniques using passive
or active heat removal by air or water flow are limited by (i) very low heat transfer or (ii) large capital as well as maintenance …