Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

UAV

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 34

Full-Text Articles in Engineering

Incorporation Of Unmanned Aerial Vehicle (Uav) Point Cloud Products Into Remote Sensing Evapotranspiration Models, Mahyar Aboutalebi, Alfonso F. Torres-Rua, Mac Mckee, William P. Kustas, Héctor Nieto, Maria Mar Alsina, Alex White, John H. Prueger, Lynn Mckee, Joseph Alfieri, Lawrence E. Hipps, Calvin Coopmans, Nick Dokoozlian Dec 2019

Incorporation Of Unmanned Aerial Vehicle (Uav) Point Cloud Products Into Remote Sensing Evapotranspiration Models, Mahyar Aboutalebi, Alfonso F. Torres-Rua, Mac Mckee, William P. Kustas, Héctor Nieto, Maria Mar Alsina, Alex White, John H. Prueger, Lynn Mckee, Joseph Alfieri, Lawrence E. Hipps, Calvin Coopmans, Nick Dokoozlian

Civil and Environmental Engineering Faculty Publications

In recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has led to production of enormous amounts of data and to novel data processing and analysis techniques for monitoring crop conditions. One overlooked data source amid these efforts, however, is incorporation of 3D information derived from multi-spectral imagery and photogrammetry algorithms into crop monitoring algorithms. Few studies and algorithms have taken advantage of 3D UAV information in monitoring and assessment of plant conditions. In this study, different aspects of UAV point cloud information for enhancing remote sensing evapotranspiration (ET) models, particularly the Two-Source Energy Balance Model (TSEB), over …


Multiple Agent Target Tracking In Gps-Denied Environments, Skyler Tolman Dec 2019

Multiple Agent Target Tracking In Gps-Denied Environments, Skyler Tolman

Theses and Dissertations

Unmanned aerial systems (UAS) are effective for surveillance and monitoring, but struggle with persistent, long-term tracking, especially without GPS, due to limited flight time. Persistent tracking can be accomplished using multiple vehicles if one vehicle can effectively hand off the tracking information to another replacement vehicle. This work presents a solution to the moving-target handoff problem in the absence of GPS. The proposed solution (a) a nonlinear complementary filter for self-pose estimation using only an IMU, (b) a particle filter for relative pose estimation between UAS using a relative range (c) visual target tracking using a gimballed camera when the …


Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque Dec 2019

Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Landing an unmanned aerial vehicle (UAV) on a moving platform is a challenging task that often requires exact models of the UAV dynamics, platform characteristics, and environmental conditions. In this thesis, we present and investigate three different machine learning approaches with varying levels of domain knowledge: dynamics randomization, universal policy with system identification, and reinforcement learning with no parameter variation. We first train the policies in simulation, then perform experiments both in simulation, making variations of the system dynamics with wind and friction coefficient, then perform experiments in a real robot system with wind variation. We initially expected that providing …


Extending Mission Duration Of Uas Multicopters: Multi-Disciplinary Approach, Marc Lussier Dec 2019

Extending Mission Duration Of Uas Multicopters: Multi-Disciplinary Approach, Marc Lussier

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Multicopters are important tools in industry, the military, and research but suffer from short flight times and mission durations. In this thesis, we discuss three different ways to increase flight times and therefore increase the viability of using multicopters in a variety of missions. Alternate fuel sources such as hydrogen fuel and solar cells are starting to be used on multicopters, in our research we simulate modern fuel cells and show how well they currently work as the power source for multicopters and how close they are to becoming useful in Unmanned Aircraft System (UAS) technology. Increasing the efficiency in …


Collaborative Uav Planning, Mapping, And Exploration In Gps-Denied Environments, Jacob Moroni Olson Oct 2019

Collaborative Uav Planning, Mapping, And Exploration In Gps-Denied Environments, Jacob Moroni Olson

Theses and Dissertations

The use of multirotor UAVs to map GPS-degraded environments is useful for many purposes ranging from routine structural inspections to post-disaster exploration to search for survivors and evaluate structural integrity. Multirotor UAVs are able to reach many areas that humans and other robots cannot safely access. Because of their relatively short operational flight time compared to other robotic applications, using multiple UAVs to collaboratively map these environments can streamline the mapping process significantly. This research focuses on four primary areas regarding autonomous mapping and navigation with multiple UAVs in complex unknown or partially unknown GPS-denied environments: The first area is …


Development Of An Autonomous Aerial Toolset For Agricultural Applications, Terrance Life Oct 2019

Development Of An Autonomous Aerial Toolset For Agricultural Applications, Terrance Life

Mahurin Honors College Capstone Experience/Thesis Projects

According to the United Nations, the world population is expected to grow from its current 7 billion to 9.7 billion by the year 2050. During this time, global food demand is also expected to increase by between 59% and 98% due to the population increase, accompanied by an increasing demand for protein due to a rising standard of living throughout developing countries. [1] Meeting this increase in required food production using present agricultural practices would necessitate a similar increase in farmland; a resource which does not exist in abundance. Therefore, in order to meet growing food demands, new methods will …


Development Of A Tailored Flight Test Approach For Small Unmanned Aircraft Systems, Neil A. Wolfe Sep 2019

Development Of A Tailored Flight Test Approach For Small Unmanned Aircraft Systems, Neil A. Wolfe

Master's Theses

This document contains the details of a study conducted to determine an effective performance flight test approach specifically for small Unmanned Aircraft Systems (sUAS). This was done by taking proven procedures and documentation from the FAA and the Air Force for manned aircraft and tailoring them specifically for use with sUAS flight test programs. A ‘sUAS Flight Testing Handbook’ was created from the proceedings to aid commercial organizations and recreational developers conducting sUAS research without access to flight test experience. A performance flight test program was conducted with the AeroVironment RQ-20 Puma sUAS using the developed approach to verify that …


Robust Resource Allocation To Secure Physical Layer Using Uav-Assisted Mobile Relay Communications In 5g Technology, Shakil Ahmed Aug 2019

Robust Resource Allocation To Secure Physical Layer Using Uav-Assisted Mobile Relay Communications In 5g Technology, Shakil Ahmed

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The unmanned aerial vehicles (UAVs) are also known as drones. Recently, UAVs have attracted the next generation researchers due to their flexible, dynamic, and cost-effective deployment, etc. Moreover, the UAVs have a wide range of application domains, such as rescue operation in the remote area, military surveillance, emergency application, etc. Given the UAVs are appropriately deployed, the UAVs provide continuous and reliable connectivity, on-demand, and cost-effective features to the desired destination in the wireless communication system. Thus, the UAVs can be a great choice to deploy as a mobile relay in co-existence with the base stations (BSs) on the ground …


Detecting Invasive Insects Using Unmanned Aerial Vehicles, Brian Stumph Jul 2019

Detecting Invasive Insects Using Unmanned Aerial Vehicles, Brian Stumph

Master's Theses (2009 -)

A key aspect to controlling and reducing the effects invasive insect species have on agriculture is to obtain knowledge about the migration patterns of these species. Current state-of-the-art methods of studying these migration patterns involve a mark-release-recapture technique, in which insects are released after being marked and researchers attempt to recapture them later. However, this approach involves a human researcher manually searching for these insects in large fields and results in very low recapture rates. This thesis proposes an automated system for detecting released insects using an unmanned aerial vehicle. Our system utilizes ultraviolet lighting technology, digital cameras, and lightweight …


Propulsion System Testing For A Long-Endurance Solar-Powered Unmanned Aircraft, D. Dantsker, Robert Deters, Marco Caccamo Jun 2019

Propulsion System Testing For A Long-Endurance Solar-Powered Unmanned Aircraft, D. Dantsker, Robert Deters, Marco Caccamo

Publications

The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e. propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. In order to determine the …


Uav/Satellite Multiscale Data Fusion For Crop Monitoring And Early Stress Detection, V. Sagan, M. Maimaitijiang, P. Sidike, M. Maimaitiyiming, H. Erkbol, S. Hartling, K. T. Peterson, J. Peterson, Joel Gerard Burken, F. Fritschi Jun 2019

Uav/Satellite Multiscale Data Fusion For Crop Monitoring And Early Stress Detection, V. Sagan, M. Maimaitijiang, P. Sidike, M. Maimaitiyiming, H. Erkbol, S. Hartling, K. T. Peterson, J. Peterson, Joel Gerard Burken, F. Fritschi

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Early stress detection is critical for proactive field management and terminal yield prediction, and can aid policy making for improved food security in the context of climate change and population growth. Field surveys for crop monitoring are destructive, labor-intensive, time-consuming and not ideal for large-scale spatial and temporal monitoring. Recent technological advances in Unmanned Aerial Vehicle (UAV) and high-resolution satellite imaging with frequent revisit time have proliferated the applications of this emerging new technology in precision agriculture to address food security challenges from regional to global scales. In this paper, we present a concept of UAV and satellite virtual constellation …


A Case Study On The Use Of Drones On Heavy Civil Construction Projects, William Devers Jun 2019

A Case Study On The Use Of Drones On Heavy Civil Construction Projects, William Devers

Construction Management

Even though the construction industry is known for being behind the curve in adopting new technologies for change, construction professionals are constantly striving for ways to save money and improve efficiency. The emergence of drone technology in recent years has sparked new interest among these professionals for those exact reasons. These flying machines offer numerous benefits to construction companies such as bypassing traditional surveying methods, using photogrammetry to create 3D models used for estimating quantities, improving team communication, ensuring worker safety, increasing owner satisfaction, among other benefits. In this case study, personal interviews will be conducted on a single construction …


The Impact Of Shadows On Partitioning Of Radiometric Temperature To Canopy And Soil Temperature Based On The Contextual Two-Source Energy Balance Model (Tseb-2t), Mahyar Aboutalebi, Alfonso F. Torres-Rua, Mac Mckee, Hector Nieto, William Kustas, Calvin Coopmans May 2019

The Impact Of Shadows On Partitioning Of Radiometric Temperature To Canopy And Soil Temperature Based On The Contextual Two-Source Energy Balance Model (Tseb-2t), Mahyar Aboutalebi, Alfonso F. Torres-Rua, Mac Mckee, Hector Nieto, William Kustas, Calvin Coopmans

AggieAir Publications

Tests of the most recent version of the two-source energy balance model have demonstrated that canopy and soil temperatures can be retrieved from high-resolution thermal imagery captured by an unmanned aerial vehicle (UAV). This work has assumed a linear relationship between vegetation indices (VIs) and radiometric temperature in a square grid (i.e., 3.6 m x 3.6 m) that is coarser than the resolution of the imagery acquired by the UAV. In this method, with visible, near infrared (VNIR), and thermal bands available at the same high-resolution, a linear fit can be obtained over the pixels located in a grid, where …


Gesture-Controlled Quadcopter System, Wenhao Yang, Anthony Xu, Kendra Crawford May 2019

Gesture-Controlled Quadcopter System, Wenhao Yang, Anthony Xu, Kendra Crawford

Honors Theses

According to the statistic given by the National Law Enforcement Officers Memorial Fund, 514 police officers casualties have been attributed to gunfire in the last decade(2008-2017). It is the leading cause of death among police officers and accounts for more than a third of the total 1511 police casualties in the past decade. In this project, we want to provide a safer solution to police officers that are surveying a building for one or multiple potential dangerous personnel. We are working to design and build a gesture-controlled quadcopter that can scout ahead of the officer and provide information about the …


Uumanned Aerial Vehicle Data Analysis For High-Throughput Plant Phenotyping, Jiating Li May 2019

Uumanned Aerial Vehicle Data Analysis For High-Throughput Plant Phenotyping, Jiating Li

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

The continuing population is placing unprecedented demands on worldwide crop yield production and quality. Improving genomic selection for breeding process is one essential aspect for solving this dilemma. Benefitted from the advances in high-throughput genotyping, researchers already gained better understanding of genetic traits. However, given the comparatively lower efficiency in current phenotyping technique, the significance of phenotypic traits has still not fully exploited in genomic selection. Therefore, improving HTPP efficiency has become an urgent task for researchers. As one of the platforms utilized for collecting HTPP data, unmanned aerial vehicle (UAV) allows high quality data to be collected within short …


Unmanned Aerial Power Line Surveillance Drone, Brock Arp, Wade Vine, Cameron Whigham, Lorenzo Stewart Apr 2019

Unmanned Aerial Power Line Surveillance Drone, Brock Arp, Wade Vine, Cameron Whigham, Lorenzo Stewart

Senior Design Project For Engineers

The purpose of our project is to provide power line workers and linemen with a safe way to inspect the power lines. Our Aircraft is an UAV that is capable of surveying 200 linear miles in a normal working shift. The aircraft will be launched/landed and operated from an F-150 pickup truck with a facilitated launch mechanism attached. The aircraft must maintain an altitude of 150-400 ft. It will be recovered via net that will extend from the truck as the plane comes in for a landing, This will eliminate the need for landing gear. The goal for this project …


Conceptual Design Of A Combat Search And Rescue Surveillance Unmanned Aerial Aircraft, Juan M. Chirinos-Paiz, Keegan J. Musser, Robert M. Zenko, Joshua Hunter Apr 2019

Conceptual Design Of A Combat Search And Rescue Surveillance Unmanned Aerial Aircraft, Juan M. Chirinos-Paiz, Keegan J. Musser, Robert M. Zenko, Joshua Hunter

Senior Design Project For Engineers

Unmanned aerial vehicles (UAV) are becoming more efficient and widely used. The military uses UAV’s because it greatly reduces civilian and combatant deaths and injuries. UAV’s also are used in search and rescue mission to find distress civilians. The team wanted to create an UAV for search and rescue missions and military applications. The aircraft needed to be compact, perform better than other UAV’s, and be low cost. The team did reach a successful aircraft that meet the design requirements. The aircraft was successfully sized around the electronics and allows utilization of additive manufacturing techniques. Project management techniques showed that …


Using A Balloon-Launched Unmanned Glider To Validate Real-Time Wrf Modeling, Travis J. Schuyler, S. M. Iman Gohari, Gary Pundsack, Donald Berchoff, Marcelo I. Guzman Apr 2019

Using A Balloon-Launched Unmanned Glider To Validate Real-Time Wrf Modeling, Travis J. Schuyler, S. M. Iman Gohari, Gary Pundsack, Donald Berchoff, Marcelo I. Guzman

Chemistry Faculty Publications

The use of small unmanned aerial systems (sUAS) for meteorological measurements has expanded significantly in recent years. SUAS are efficient platforms for collecting data with high resolution in both space and time, providing opportunities for enhanced atmospheric sampling. Furthermore, advances in mesoscale weather research and forecasting (WRF) modeling and graphical processing unit (GPU) computing have enabled high resolution weather modeling. In this manuscript, a balloon-launched unmanned glider, complete with a suite of sensors to measure atmospheric temperature, pressure, and relative humidity, is deployed for validation of real-time weather models. This work demonstrates the usefulness of sUAS for validating and improving …


Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette Mar 2019

Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette

Theses and Dissertations

The increasing capabilities of commercial drones have led to blossoming drone usage in private sector industries ranging from agriculture to mining to cinema. Commercial drones have made amazing improvements in flight time, flight distance, and payload weight. These same features also offer a unique and unprecedented commodity for wireless hackers -- the ability to gain ‘physical’ proximity to a target without personally having to be anywhere near it. This capability is called Remote Physical Proximity (RPP). By their nature, wireless devices are largely susceptible to sniffing and injection attacks, but only if the attacker can interact with the device via …


Product Development Process For Small Unmanned Aerial Systems, Jonathan D. Poole Mar 2019

Product Development Process For Small Unmanned Aerial Systems, Jonathan D. Poole

Theses and Dissertations

The DoD has recognized the need for persistent Intelligence, Surveillance and Reconnaissance (ISR) over the last two decades. Recent developments with commercial drones have changed the market structure; there is now a thriving and extensive market base for drone based remote sensing. This research provides system engineering methods to support the DoD use of this burgeoning market to meet operational ISR needs. The three contributions of this research are: a process to support Small Unmanned Aerial Systems (SUAS) design, tools to support the design process, and tools to support risk assessment and reduction for both design and operations. The process …


Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins Feb 2019

Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins

Kevin A. Adkins, PhD

The Federal Aviation Administration (FAA) has put forth a set of regulations (Part 107) that govern small unmanned aerial system (sUAS) operations. These regulations restrict unmanned aircraft (UA) from flying over people and their operation to within visual line of sight (VLOS). However, as new applications for unmanned aerial systems (UAS) are discovered, their capabilities improve, and regulations evolve, there is an increasing desire to undertake urban operations, such as urban air mobility, package delivery, infrastructure inspection, and surveillance. This built environment poses new weather hazards that include enhanced wind shear and turbulence. The smaller physical dimensions, lower mass and …


Analysis Of Uas Avoidance Warning Criteria Based On "Τ-Τ", Zhiwei Zhang, Jianwu Tao, Shao Xiao Jan 2019

Analysis Of Uas Avoidance Warning Criteria Based On "Τ-Τ", Zhiwei Zhang, Jianwu Tao, Shao Xiao

Journal of System Simulation

Abstract: In the process of UAV avoiding obstacles, the tau warning logic based on time is introduced. Based on the tau warning logic, the τ-τ warning logic is proposed, and the equal τ-τ warning curve is constructed. According to the range of maneuver of the own UAV, three warning areas are defined, including high-risk area, low-risk area and non-risk area. Aiming at the two planes in the case of parallel encounter and vertical encounter, in accordance with three different situations of the UAV’s speed greater than, equal to and less than the intruder’s speed, the method simulates the warning …


First Approach To Coupling Of Numerical Lifting-Line Theory And Linear Covariance Analysis For Uav State Uncertainty Propagation, Cory D. Goates, Randall S. Christensen, Robert C. Leishman Jan 2019

First Approach To Coupling Of Numerical Lifting-Line Theory And Linear Covariance Analysis For Uav State Uncertainty Propagation, Cory D. Goates, Randall S. Christensen, Robert C. Leishman

Faculty Publications

Numerical lifting-line is a computationally efficient method for calculating aerodynamic forces and moments on aircraft. However, its potential has yet to be tapped for use in guidance, navigation, and control (GN&C). Linear covariance analysis is becoming a popular GN&C design tool and shows promise for pairing with numerical lifting-line. Pairing numerical lifting-line with linear covariance analysis allows for forward propagation of state uncertainty for real-time decision making. We demonstrate this for select state variables in a drone aerial recapture situation. Linear covariance analysis uses finite difference derivatives obtained from numerical lifting-line to calculate force and moment variances. These show agreement …


Rapeseed Seedling Stand Counting And Seeding Performance Evaluation At Two Early Growth Stages Based On Unmanned Aerial Vehicle Imagery, Biquan Zhao, Jian Zhang, Chenghai Yang, Guangsheng Zhou, Youchun Ding, Yeyin Shi, Dongyan Zhang, Jing Xie, Qingxi Liao Jan 2019

Rapeseed Seedling Stand Counting And Seeding Performance Evaluation At Two Early Growth Stages Based On Unmanned Aerial Vehicle Imagery, Biquan Zhao, Jian Zhang, Chenghai Yang, Guangsheng Zhou, Youchun Ding, Yeyin Shi, Dongyan Zhang, Jing Xie, Qingxi Liao

Biological Systems Engineering: Papers and Publications

The development of unmanned aerial vehicles (UAVs) and image processing algorithms for field-based phenotyping offers a non-invasive and effective technology to obtain plant growth traits such as canopy cover and plant height in fields. Crop seedling stand count in early growth stages is important not only for determining plant emergence, but also for planning other related agronomic practices. The main objective of this research was to develop practical and rapid remote sensing methods for early growth stage stand counting to evaluate mechanically seeded rapeseed (Brassica napus L.) seedlings. Rapeseed was seeded in a field by three different seeding devices. A …


Unmanned Aerial And Traversing Vehicle -- A Mobile Platform For Bridge Inspections, Clayton A. Fritsche Jan 2019

Unmanned Aerial And Traversing Vehicle -- A Mobile Platform For Bridge Inspections, Clayton A. Fritsche

Masters Theses

“Unmanned aerial vehicles (UAVs), also known as drones, have been rapidly growing in popularity since their creation. This study aimed to create a robotic platform used to assist in the inspection process of the nation’s aging and deteriorating bridges. To this end, a multimodal inspection robot that utilized both flying and driving technologies, was designed, analyzed, and tested for aerial, traversing, and their transitional operability. The design, herein referred to as the “BridgeBot”, was evaluated both computationally and experimentally. A finite element model of the BridgeBot was established and analyzed under static loading scenarios to help determine stress distributions and …


Design Of Plant Protection Uav Variable Spray System Based On Neural Networks, Sheng Wen, Quanyong Zhang, Xuanchun Yin, Yubin Lan, Jiantao Zhang, Yufeng Ge Jan 2019

Design Of Plant Protection Uav Variable Spray System Based On Neural Networks, Sheng Wen, Quanyong Zhang, Xuanchun Yin, Yubin Lan, Jiantao Zhang, Yufeng Ge

Biological Systems Engineering: Papers and Publications

Recently, unmanned aerial vehicles (UAVs) have rapidly emerged as a new technology in the fields of plant protection and pest control in China. Based on existing variable spray research, a plant protection UAV variable spray system integrating neural network based decision making is designed. Using the existing data on plant protection UAV operations, combined with artificial neural network (ANN) technology, an error back propagation (BP) neural network model between the factors affecting droplet deposition is trained. The factors affecting droplet deposition include ambient temperature, ambient humidity, wind speed, flight speed, flight altitude, propeller pitch, nozzles pitch and prescription value. Subsequently, …


Artificial Immune System For Unmanned Aerial Vehicle Abnormal Condition Detection And Identification, Ryan G. Mclaughlin Jan 2019

Artificial Immune System For Unmanned Aerial Vehicle Abnormal Condition Detection And Identification, Ryan G. Mclaughlin

Graduate Theses, Dissertations, and Problem Reports

A detection and identification scheme for abnormal conditions was developed for an unmanned aerial vehicle (UAV) based on the artificial immune system (AIS) paradigm. This technique involves establishing a body of data to represent normal conditions referred to as “self” and differentiating these conditions from abnormal conditions, referred to as “non-self”. Data collected from simulation of the UAV attempting to autonomously fly a pre-decided trajectory were used to develop and test a scheme that was able to detect and identify aircraft sensor and actuator faults. These faults included aerodynamic control surface locks and damages and angular rate sensor biases. The …


Space Dynamics Laboratory Payload Challenge: Autonomous Water Sampling Uav, Thomas Wheeler, Zachary Williams, Joseph Stack Jan 2019

Space Dynamics Laboratory Payload Challenge: Autonomous Water Sampling Uav, Thomas Wheeler, Zachary Williams, Joseph Stack

Williams Honors College, Honors Research Projects

The following report has been completed over the course of the Fall 2018 and Spring 2019 semesters at The University of Akron by Joseph P. Stack (Aerospace Systems Engineering), Thomas J. Wheeler (Mechanical Engineering) and Zachary M. Williams (Mechanical Engineering). The purpose of this project was to create a payload system for the Akronauts Rocket Design Team to use at the Intercollegiate Rocket Engineering Competition (IREC) Spaceport America Cup. The Competition as a challenge that is sponsored by Space Dynamics Laboratory specifically regarding payload systems. The challenge in very open-ended and allows student to identify their own scientific experiment and …


Swat Operations Unmanned Vehicle, John K. Zelina, Tyler Meadows, Ryan Cook, Mathew Fellows Jan 2019

Swat Operations Unmanned Vehicle, John K. Zelina, Tyler Meadows, Ryan Cook, Mathew Fellows

Williams Honors College, Honors Research Projects

During SWAT operations, it is common to have a barricaded suspect who may be armed and a serious threat to SWAT team personnel. In these cases, sending a robot into harm's way to assess the situation as opposed to an operator has become the standard. The purpose of this of this research was to design and develop an unmanned system for the City of Akron's SWAT Team that can be injected into these scenarios to improve outcomes and mitigate risk to SWAT operators.


Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman Jan 2019

Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman

Faculty Publications

A key enabler of autonomous vehicles is the ability to plan the path of the vehicle to accomplish mission objectives. To be robust to realistic environments, path planners must account for uncertainty in the trajectory of the vehicle as well as uncertainty in the location of obstacles. The uncertainty in the trajectory of the vehicle is a difficult quantity to estimate, and is influenced by coupling between the vehicle dynamics, guidance, navigation, and control system as well as any disturbances acting on the vehicle. Monte Carlo analysis is the conventional approach to determine vehicle dispersion, while accounting for the coupled …