Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Nurbs-Based Microstructure Design For Organic Photovoltaics, Ramin Noruzi, Sambit Ghadai, Onur Rauf Bingol, Adarsh Krishnamurthy, Baskar Ganapathysubramanian Oct 2019

Nurbs-Based Microstructure Design For Organic Photovoltaics, Ramin Noruzi, Sambit Ghadai, Onur Rauf Bingol, Adarsh Krishnamurthy, Baskar Ganapathysubramanian

Baskar Ganapathysubramanian

The microstructure – spatial distribution of electron donor and acceptor domains – plays an important role in determining the photo current in thin film organic solar cells (OSCs). Optimizing the microstructure can lead to higher photo current generation, and is an active area of experimental research. There has been recent progress in framing OSC microstructure design as a computational design problem. However, most current approaches to microstructure optimization are based on volumetric distribution of material, which makes the design space very large. In contrast, we frame the microstructure design optimization problem in terms of designing the interface between the donor and acceptor ...


Takeoff And Performance Tradeoffs Of Retrofit Distributed Electric Propulsion For Urban Transport, Kevin Moore, Andrew Ning Aug 2019

Takeoff And Performance Tradeoffs Of Retrofit Distributed Electric Propulsion For Urban Transport, Kevin Moore, Andrew Ning

Faculty Publications

While vertical takeoff and landing aircraft have shown promise for urban air transport, distributed electric propulsion on existing aircraft may offer immediately implementable alternatives. Distributed electric propulsion could potentially decrease takeoff distances enough to enable thousands of potential inter-city runways. This conceptual study explores the effects of a retrofit of open-bladed electric propulsion units. To model and explore the design space we use blade element momentum method, vortex lattice method, linear-beam finite element analysis, classical laminate theory, composite failure, empirically-based blade noise modeling, motor and motor-controller mass models, and gradient-based optimization. With liftoff time of seconds and the safe total ...


Unsupervised-Learning Assisted Artificial Neural Network For Optimization, Varun Kote Jul 2019

Unsupervised-Learning Assisted Artificial Neural Network For Optimization, Varun Kote

Mechanical & Aerospace Engineering Theses & Dissertations

Innovations in computer technology made way for Computational Fluid Dynamics (CFD) into engineering, which supported the development of new designs by reducing the cost and time by lowering the dependency on experimentation. There is a further need to make the process of development more efficient. One such technology is Artificial Intelligence. In this thesis, we explore the application of Artificial Intelligence (AI) in CFD and how it can improve the process of development.

AI is used as a buzz word for the mechanism which can learn by itself and make the decision accordingly. Machine learning (ML) is a subset of ...


Gaussian Process Regression Applied To Marine Energy Turbulent Source Tuning Via Metamodel Machine Learning Optimization, Sterling Olson Apr 2019

Gaussian Process Regression Applied To Marine Energy Turbulent Source Tuning Via Metamodel Machine Learning Optimization, Sterling Olson

Mechanical Engineering ETDs

Converting energy from the currents found within tidal channels, open ocean, rivers, and canals is a promising yet untapped source of renewable energy. In order to permit current energy converters for installation in the environment, the CECs must be shown to non-negatively impact the environment. While developing these model increased utility may be gained if researchers may optimize mechanical power while constraining environmental effects. Surrogate models have garnered interest as optimization tools because they maximize the utility of expensive information by building predictive models in place of computational or experimentally expensive model runs. Marine hydrokinetic current energy converters require large-domain ...


Characterization And Optimization Of A Propeller Test Stand, Colin Bruce Leighton Benjamin Apr 2019

Characterization And Optimization Of A Propeller Test Stand, Colin Bruce Leighton Benjamin

Mechanical & Aerospace Engineering Theses & Dissertations

In recent history, there has been a rapid rise in the use of drones, and they are expanding in popularity each year. The widespread use and future capabilities of these unmanned aerial vehicles (UAVs) will call for increased study and classification of propellers to maximize their performance. As a result, it is necessary to have continuity in the development, maximization, and optimization of propeller test stand’s capability to collect accurate and precise measurements. It is of significant advantage to have the capability of accurately characterizing a propeller based on its thrust and torque. In this study, a propeller test ...


A Data-Driven Toolchain For The Operational Performance Analysis And Optimization Of Buildings, Anthony Reed Florita Jan 2019

A Data-Driven Toolchain For The Operational Performance Analysis And Optimization Of Buildings, Anthony Reed Florita

Civil Engineering Graduate Theses & Dissertations

Automation has proven indispensable to advancing human endeavors. Within the built environment its evolution and sophistication are on the cusp of moving beyond automatic control into automated prediction and diagnosis. A data-driven toolchain is developed so human efforts can be focused on high-value concerns. The research examines smart buildings as a cyberphysical construct and places the Bayesian perspective as paramount. Prior knowledge is leveraged through common building energy modeling and simulation tools, which are utilized and extended. An iterative, three-step process is developed to 1) classify building energy performance scenarios, 2) forecast dynamics over a planning horizon of interest, and ...


Time-Dependent Reliability Methodologies With Saddlepoint Approximation, Zhangli Hu Jan 2019

Time-Dependent Reliability Methodologies With Saddlepoint Approximation, Zhangli Hu

Doctoral Dissertations

"Engineers always encounter time-dependent uncertainties that ubiquitously exist, such as the random deterioration of material properties and time-variant loads. Therefore the reliability of engineering systems becomes time-dependent. It is crucial to predict the time-dependent reliability in the design stage, given possible catastrophic consequences of a failure. Although extensive research has been conducted on reliability analysis, estimating the reliability accurately and efficiently is still challenging. The objective of this work is to develop accurate and efficient reliability methodologies for engineering design. The basic idea is the integration of traditional reliability methods with saddlepoint approximation (SPA), which can accurately approximate the tail ...


Performance Enhancement Of Human Motion Based Piezoelectric Energy Harvesters, Iman Izadgoshasb Jan 2019

Performance Enhancement Of Human Motion Based Piezoelectric Energy Harvesters, Iman Izadgoshasb

Theses

Harvesting electricity from human motions using piezoelectric materials is attracting the attention of many researchers in recent years. These harvesters can potentially power portable electronic devices without the need of external power sources.

The aim of this thesis was to improve the efficiency of piezoelectric energy harvesting from human motions. To achieve this, optimising orientation of piezoelectric cantilever beam investigated; the new mechanism consisting of double pendulum system was studied and finally the new shape design of cantilever was proposed to generate multi resonance peaks. These achievements may help to improve the efficiency of piezoelectric energy harvesters in the future.


Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein Jan 2019

Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein

Dissertations, Master's Theses and Master's Reports

The US military is moving toward the electrification of many weapon systems and platforms. Advanced weapon systems such as high energy radar, electro-magnetic kinetic weapons and directed energy pose significant integration challenges due to their pulsed power electrical load profile. Additionally, the weapons platforms, including ships, aircraft, and vehicles can be studied as a mobile microgrids with multiple generation sources, loads, and energy storage. There is also a desire to extend the mission profile and capabilities of these systems. Common goals are to increase fuel efficiency, maintaining system stability, and reduce energy storage size as typically required to enable pulsed ...