Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Machine learning

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 50

Full-Text Articles in Engineering

Machine Learning In Support Of Electric Distribution Asset Failure Prediction, Robert D. Flamenbaum, Thomas Pompo, Christopher Havenstein, Jade Thiemsuwan Aug 2019

Machine Learning In Support Of Electric Distribution Asset Failure Prediction, Robert D. Flamenbaum, Thomas Pompo, Christopher Havenstein, Jade Thiemsuwan

SMU Data Science Review

In this paper, we present novel approaches to predicting as- set failure in the electric distribution system. Failures in overhead power lines and their associated equipment in particular, pose significant finan- cial and environmental threats to electric utilities. Electric device failure furthermore poses a burden on customers and can pose serious risk to life and livelihood. Working with asset data acquired from an electric utility in Southern California, and incorporating environmental and geospatial data from around the region, we applied a Random Forest methodology to predict which overhead distribution lines are most vulnerable to fail- ure. Our results provide evidence ...


Bayesian Optimization For Refining Object Proposals, Anthony D. Rhodes, Jordan Witte, Melanie Mitchell, Bruno Jedynak Aug 2019

Bayesian Optimization For Refining Object Proposals, Anthony D. Rhodes, Jordan Witte, Melanie Mitchell, Bruno Jedynak

Melanie Mitchell

We develop a general-purpose algorithm using a Bayesian optimization framework for the efficient refinement of object proposals. While recent research has achieved substantial progress for object localization and related objectives in computer vision, current state-of-the-art object localization procedures are nevertheless encumbered by inefficiency and inaccuracy. We present a novel, computationally efficient method for refining inaccurate bounding-box proposals for a target object using Bayesian optimization. Offline, image features from a convolutional neural network are used to train a model to predict an object proposal’s offset distance from a target object. Online, this model is used in a Bayesian active search ...


Fast On-Line Kernel Density Estimation For Active Object Localization, Anthony D. Rhodes, Max H. Quinn, Melanie Mitchell Aug 2019

Fast On-Line Kernel Density Estimation For Active Object Localization, Anthony D. Rhodes, Max H. Quinn, Melanie Mitchell

Melanie Mitchell

A major goal of computer vision is to enable computers to interpret visual situations—abstract concepts (e.g., “a person walking a dog,” “a crowd waiting for a bus,” “a picnic”) whose image instantiations are linked more by their common spatial and semantic structure than by low-level visual similarity. In this paper, we propose a novel method for prior learning and active object localization for this kind of knowledge-driven search in static images. In our system, prior situation knowledge is captured by a set of flexible, kernel-based density estimations— a situation model—that represent the expected spatial structure of the ...


Asap: A Source Code Authorship Program, Matthew F. Tennyson Phd Aug 2019

Asap: A Source Code Authorship Program, Matthew F. Tennyson Phd

Faculty & Staff Research and Creative Activity

Source code authorship attribution is the task of determining who wrote a computer program, based on its source code, usually when the author is either unknown or under dispute. Areas where this can be applied include software forensics, cases of software copyright infringement, and detecting plagiarism. Numerous methods of source code authorship attribution have been proposed and studied. However, there are no known easily accessible and user-friendly programs that perform this task. Instead, researchers typically develop software in an ad hoc manner for use in their studies, and the software is rarely made publicly available. In this paper, we present ...


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Student Research Projects, Dissertations, and Theses - Chemistry Department

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get ...


Understanding Self-Assembly And Charge Transport In Organic Solar Cells Through Efficient Computation, Evan Miller Aug 2019

Understanding Self-Assembly And Charge Transport In Organic Solar Cells Through Efficient Computation, Evan Miller

Boise State University Theses and Dissertations

Organic solar cells capable of sustainably generating electricity are possible if: (1) The structures assembled by photoactive molecules can be controlled, and (2) The structures favorable for charge transport can be determined. In this dissertation we conduct computational studies to understand relationships between organic solar cell compounds, processing, structure and charge transport. We advance tools for encapsulating computational workflows so that simulations are more reproducible and transferable. We find that molecular dynamic simulations using simplified models efficiently predict experimental structures. We find that the mobilities of charges through these structures—as determined by kinetic Monte Carlo simulations—match qualitative trends ...


Evaluating Machine Learning Performance In Predicting Injury Severity In Agribusiness Industries, Fatemeh Davoudi Kakhki, Steven A. Freeman, Gretchen A. Mosher Aug 2019

Evaluating Machine Learning Performance In Predicting Injury Severity In Agribusiness Industries, Fatemeh Davoudi Kakhki, Steven A. Freeman, Gretchen A. Mosher

Agricultural and Biosystems Engineering Publications

Although machine learning methods have been used as an outcome prediction tool in many fields, their utilization in predicting incident outcome in occupational safety is relatively new. This study tests the performance of machine learning techniques in modeling and predicting occupational incidents severity with respect to accessible information of injured workers in agribusiness industries using workers’ compensation claims. More than 33,000 incidents within agribusiness industries in the Midwest of the United States for 2008–2016 were analyzed. The total cost of incidents was extracted and classified from workers’ compensation claims. Supervised machine learning algorithms for classification (support vector machines ...


Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher Jul 2019

Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher

Christof Teuscher

In machine learning research, adversarial examples are normal inputs to a classifier that have been specifically perturbed to cause the model to misclassify the input. These perturbations rarely affect the human readability of an input, even though the model’s output is drastically different. Recent work has demonstrated that image-classifying deep neural networks (DNNs) can be reliably fooled with the modification of a single pixel in the input image, without knowledge of a DNN’s internal parameters. This “one-pixel attack” utilizes an iterative evolutionary optimizer known as differential evolution (DE) to find the most effective pixel to perturb, via the ...


Explanation Methods For Neural Networks, Jack H. Chen, Christof Teuscher Jul 2019

Explanation Methods For Neural Networks, Jack H. Chen, Christof Teuscher

Christof Teuscher

Neural Networks (NNs) have become a basis of almost all state-of-the-art machine learning algorithms and classifiers. While NNs have been shown to generalize well to real-world examples, researchers have struggled to show why they work on an intuitive level. We designed several methods to explain the decisions of two state-of-the-art NN classifiers, ResNet and an All-CNN, in the context of the Japanese Society of Radiological Technology (JSRT) lung nodule dataset and the CIFAR-10 image dataset. Leading explanation methods LIME and Grad-CAM generate variations of heat maps which represent the regions of the input determined salient by the NN. We analyze ...


Reliable Explanations Via Adversarial Examples On Robust Networks, Walt Woods, Jack H. Chen, Christof Teuscher Jul 2019

Reliable Explanations Via Adversarial Examples On Robust Networks, Walt Woods, Jack H. Chen, Christof Teuscher

Christof Teuscher

Neural Networks (NNs) are increasingly used as the basis of advanced machine learning techniques in sensitive fields such as autonomous vehicles and medical imaging. However, NNs have been found vulnerable to a class of imperceptible attacks, called adversarial examples, which arbitrarily alter the output of the network. To close the schism between needing reliability in real-world applications and the fragility of NNs, we propose a new method for stabilizing networks, and show that as an added bonus, our technique results in reliable, high-fidelity explanations for the NN's decision. Compared to the state-of-the-art, this technique increased the area under the ...


Mud Loss Estimation Using Machine Learning Approach, Abo Taleb T. Al-Hameedi, Husam H. Alkinani, Shari Dunn-Norman, Ralph E. Flori, Steven Austin Hilgedick, Ahmed S. Amer, Mortadha Alsaba Jul 2019

Mud Loss Estimation Using Machine Learning Approach, Abo Taleb T. Al-Hameedi, Husam H. Alkinani, Shari Dunn-Norman, Ralph E. Flori, Steven Austin Hilgedick, Ahmed S. Amer, Mortadha Alsaba

Ralph E. Flori

Lost circulation costs are a significant expense in drilling oil and gas wells. Drilling anywhere in the Rumaila field, one the world's largest oilfields, requires penetrating the Dammam formation, which is notorious for lost circulation issues and thus a great source of information on lost circulation events. This paper presents a new, more precise model to predict lost circulation volumes, equivalent circulation density (ECD), and rate of penetration (ROP) in the Dammam formation. A larger data set, more systematic statistical approach, and a machine-learning algorithm have produced statistical models that give a better prediction of the lost circulation volumes ...


Mud Loss Estimation Using Machine Learning Approach, Abo Taleb T. Al-Hameedi, Husam H. Alkinani, Shari Dunn-Norman, Ralph E. Flori, Steven Austin Hilgedick, Ahmed S. Amer, Mortadha Alsaba Jul 2019

Mud Loss Estimation Using Machine Learning Approach, Abo Taleb T. Al-Hameedi, Husam H. Alkinani, Shari Dunn-Norman, Ralph E. Flori, Steven Austin Hilgedick, Ahmed S. Amer, Mortadha Alsaba

Shari Dunn-Norman

Lost circulation costs are a significant expense in drilling oil and gas wells. Drilling anywhere in the Rumaila field, one the world's largest oilfields, requires penetrating the Dammam formation, which is notorious for lost circulation issues and thus a great source of information on lost circulation events. This paper presents a new, more precise model to predict lost circulation volumes, equivalent circulation density (ECD), and rate of penetration (ROP) in the Dammam formation. A larger data set, more systematic statistical approach, and a machine-learning algorithm have produced statistical models that give a better prediction of the lost circulation volumes ...


Mid To Late Season Weed Detection In Soybean Production Fields Using Unmanned Aerial Vehicle And Machine Learning, Arun Narenthiran Veeranampalayam Sivakumar Jul 2019

Mid To Late Season Weed Detection In Soybean Production Fields Using Unmanned Aerial Vehicle And Machine Learning, Arun Narenthiran Veeranampalayam Sivakumar

Biological Systems Engineering--Dissertations, Theses, and Student Research

Mid-late season weeds are those that escape the early season herbicide applications and those that emerge late in the season. They might not affect the crop yield, but if uncontrolled, will produce a large number of seeds causing problems in the subsequent years. In this study, high-resolution aerial imagery of mid-season weeds in soybean fields was captured using an unmanned aerial vehicle (UAV) and the performance of two different automated weed detection approaches – patch-based classification and object detection was studied for site-specific weed management. For the patch-based classification approach, several conventional machine learning models on Haralick texture features were compared ...


Field Drilling Data Cleaning And Preparation For Data Analytics Applications, Daniel Cardoso Braga Jun 2019

Field Drilling Data Cleaning And Preparation For Data Analytics Applications, Daniel Cardoso Braga

LSU Master's Theses

Throughout the history of oil well drilling, service providers have been continuously striving to improve performance and reduce total drilling costs to operating companies. Despite constant improvement in tools, products, and processes, data science has not played a large part in oil well drilling. With the implementation of data science in the energy sector, companies have come to see significant value in efficiently processing the massive amounts of data produced by the multitude of internet of thing (IOT) sensors at the rig. The scope of this project is to combine academia and industry experience to analyze data from 13 different ...


Gold Tree Solar Farm - Machine Learning To Predict Solar Power Generation, Jonathon T. Scott Jun 2019

Gold Tree Solar Farm - Machine Learning To Predict Solar Power Generation, Jonathon T. Scott

Computer Science and Software Engineering

Solar energy causes a strain on the electrical grid because of the uncontrollable nature of the factors that affect power generation. Utilities are often required to balance solar generation facilities to meet consumer demand, which often includes the costly process of activating/deactivating a fossil fuel facility. Therefore, there is considerable interest in increasing the accuracy and the granularity of solar power generation predictions in order to reduce the cost of grid management. This project aims to evaluate how sky imaging technology may contribute to the accuracy of those predictions.


Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman, Ryan Dean Weideman Jun 2019

Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman, Ryan Dean Weideman

Master's Theses and Project Reports

The application of robotics in cluttered and dynamic environments provides a wealth of challenges. This thesis proposes a deep reinforcement learning based system that determines collision free navigation robot velocities directly from a sequence of depth images and a desired direction of travel. The system is designed such that a real robot could be placed in an unmapped, cluttered environment and be able to navigate in a desired direction with no prior knowledge. Deep Q-learning, coupled with the innovations of double Q-learning and dueling Q-networks, is applied. Two modifications of this architecture are presented to incorporate direction heading information that ...


Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji Jun 2019

Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji

Honors Theses

Soft robotics is an emerging field of research due to its potential to explore and operate in unstructured, rugged, and dynamic environments. However, the properties that make soft robots compelling also make them difficult to robustly control. Here at Union, we developed the world’s first wireless soft tensegrity robot. The goal of my thesis is to explore effective and efficient methods to explore the diverse behavior our tensegrity robot. We will achieve that by applying state-of-art machine learning technique and a novelty search algorithm.


Implementation Of Multivariate Artificial Neural Networks Coupled With Genetic Algorithms For The Multi-Objective Property Prediction And Optimization Of Emulsion Polymers, David Chisholm Jun 2019

Implementation Of Multivariate Artificial Neural Networks Coupled With Genetic Algorithms For The Multi-Objective Property Prediction And Optimization Of Emulsion Polymers, David Chisholm

Master's Theses and Project Reports

Machine learning has been gaining popularity over the past few decades as computers have become more advanced. On a fundamental level, machine learning consists of the use of computerized statistical methods to analyze data and discover trends that may not have been obvious or otherwise observable previously. These trends can then be used to make predictions on new data and explore entirely new design spaces. Methods vary from simple linear regression to highly complex neural networks, but the end goal is similar. The application of these methods to material property prediction and new material discovery has been of high interest ...


Mud Loss Estimation Using Machine Learning Approach, Abo Taleb T. Al-Hameedi, Husam H. Alkinani, Shari Dunn-Norman, Ralph E. Flori, Steven Austin Hilgedick, Ahmed S. Amer, Mortadha Alsaba Jun 2019

Mud Loss Estimation Using Machine Learning Approach, Abo Taleb T. Al-Hameedi, Husam H. Alkinani, Shari Dunn-Norman, Ralph E. Flori, Steven Austin Hilgedick, Ahmed S. Amer, Mortadha Alsaba

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Lost circulation costs are a significant expense in drilling oil and gas wells. Drilling anywhere in the Rumaila field, one the world's largest oilfields, requires penetrating the Dammam formation, which is notorious for lost circulation issues and thus a great source of information on lost circulation events. This paper presents a new, more precise model to predict lost circulation volumes, equivalent circulation density (ECD), and rate of penetration (ROP) in the Dammam formation. A larger data set, more systematic statistical approach, and a machine-learning algorithm have produced statistical models that give a better prediction of the lost circulation volumes ...


Data-Driven Integral Reinforcement Learning For Continuous-Time Non-Zero-Sum Games, Yongliang Yang, Liming Wang, Hamidreza Modares, Dawei Ding, Yixin Yin, Donald C. Wunsch Jun 2019

Data-Driven Integral Reinforcement Learning For Continuous-Time Non-Zero-Sum Games, Yongliang Yang, Liming Wang, Hamidreza Modares, Dawei Ding, Yixin Yin, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

This paper develops an integral value iteration (VI) method to efficiently find online the Nash equilibrium solution of two-player non-zero-sum (NZS) differential games for linear systems with partially unknown dynamics. To guarantee the closed-loop stability about the Nash equilibrium, the explicit upper bound for the discounted factor is given. To show the efficacy of the presented online model-free solution, the integral VI method is compared with the model-based off-line policy iteration method. Moreover, the theoretical analysis of the integral VI algorithm in terms of three aspects, i.e., positive definiteness properties of the updated cost functions, the stability of the ...


Recent Advances In Low-Cost Particulate Matter Sensor: Calibration And Application, Jiayu Li May 2019

Recent Advances In Low-Cost Particulate Matter Sensor: Calibration And Application, Jiayu Li

Engineering and Applied Science Theses & Dissertations

Particulate matter (PM) has been monitored routinely due to its negative effects on human health and atmospheric visibility. Standard gravimetric measurements and current commercial instruments for field measurements are still expensive and laborious. The high cost of conventional instruments typically limits the number of monitoring sites, which in turn undermines the accuracy of real-time mapping of sources and hotspots of air pollutants with insufficient spatial resolution. The new trends of PM concentration measurement are personalized portable devices for individual customers and networking of large quantity sensors to meet the demand of Big Data. Therefore, low-cost PM sensors have been studied ...


Estimation Of Soil Moisture At Different Soil Levels Using Machine Learning Techniques And Unmanned Aerial Vehicle (Uav) Multispectral Imagery, Mahyar Aboutalebi, L. Niel Allen, Alfonso F. Torres-Rua, Mac Mckee, Calvin Coopmans May 2019

Estimation Of Soil Moisture At Different Soil Levels Using Machine Learning Techniques And Unmanned Aerial Vehicle (Uav) Multispectral Imagery, Mahyar Aboutalebi, L. Niel Allen, Alfonso F. Torres-Rua, Mac Mckee, Calvin Coopmans

AggieAir Publications

Soil moisture is a key component of water balance models. Physically, it is a nonlinear function of parameters that are not easily measured spatially, such as soil texture and soil type. Thus, several studies have been conducted on the estimation of soil moisture using remotely sensed data and data mining techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). However, all models developed based on these techniques are limited to site-specific applications where they are trained and their parameters are tuned. Moreover, since the system of non-linear equations produced by and conducted in the machine learning process ...


Depressiongnn: Depression Prediction Using Graph Neural Network On Smartphone And Wearable Sensors, Param Bidja May 2019

Depressiongnn: Depression Prediction Using Graph Neural Network On Smartphone And Wearable Sensors, Param Bidja

Honors Scholar Theses

Depression prediction is a complicated classification problem because depression diagnosis involves many different social, physical, and mental signals. Traditional classification algorithms can only reach an accuracy of no more than 70% given the complexities of depression. However, a novel approach using Graph Neural Networks (GNN) can be used to reach over 80% accuracy, if a graph can represent the depression data set to capture differentiating features. Building such a graph requires 1) the definition of node features, which must be highly correlated with depression, and 2) the definition for edge metrics, which must also be highly correlated with depression. In ...


Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher May 2019

Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher

Student Research Symposium

In machine learning research, adversarial examples are normal inputs to a classifier that have been specifically perturbed to cause the model to misclassify the input. These perturbations rarely affect the human readability of an input, even though the model’s output is drastically different. Recent work has demonstrated that image-classifying deep neural networks (DNNs) can be reliably fooled with the modification of a single pixel in the input image, without knowledge of a DNN’s internal parameters. This “one-pixel attack” utilizes an iterative evolutionary optimizer known as differential evolution (DE) to find the most effective pixel to perturb, via the ...


Explanation Methods For Neural Networks, Jack H. Chen, Christof Teuscher May 2019

Explanation Methods For Neural Networks, Jack H. Chen, Christof Teuscher

Student Research Symposium

Neural Networks (NNs) have become a basis of almost all state-of-the-art machine learning algorithms and classifiers. While NNs have been shown to generalize well to real-world examples, researchers have struggled to show why they work on an intuitive level. We designed several methods to explain the decisions of two state-of-the-art NN classifiers, ResNet and an All-CNN, in the context of the Japanese Society of Radiological Technology (JSRT) lung nodule dataset and the CIFAR-10 image dataset. Leading explanation methods LIME and Grad-CAM generate variations of heat maps which represent the regions of the input determined salient by the NN. We analyze ...


Reliable Explanations Via Adversarial Examples On Robust Networks, Walt Woods, Jack H. Chen, Christof Teuscher May 2019

Reliable Explanations Via Adversarial Examples On Robust Networks, Walt Woods, Jack H. Chen, Christof Teuscher

Student Research Symposium

Neural Networks (NNs) are increasingly used as the basis of advanced machine learning techniques in sensitive fields such as autonomous vehicles and medical imaging. However, NNs have been found vulnerable to a class of imperceptible attacks, called adversarial examples, which arbitrarily alter the output of the network. To close the schism between needing reliability in real-world applications and the fragility of NNs, we propose a new method for stabilizing networks, and show that as an added bonus, our technique results in reliable, high-fidelity explanations for the NN's decision. Compared to the state-of-the-art, this technique increased the area under the ...


Diagnostic Imaging Of Structural Concrete Using Ground Penetrating Radar And Ultrasonic Array, Sina Mehdinia, Thomas Schumacher, Eric Wan, Xubo Song May 2019

Diagnostic Imaging Of Structural Concrete Using Ground Penetrating Radar And Ultrasonic Array, Sina Mehdinia, Thomas Schumacher, Eric Wan, Xubo Song

Student Research Symposium

Structural concrete is the most widely used construction material in the world. Many structures critical to a society such as bridges, hospitals, and airports are built with concrete. While this material is well understood from a mechanical design point of view, still no accurate quantitative tools exist to assess it for damage and deterioration. This is of particular concern for an urban area like Portland with a mega-thrust earthquake waiting to occur. Non-destructive evaluation tools that can quickly and accurately give a full picture of the integrity of structural concrete elements will be key to help plan effective and safe ...


Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre May 2019

Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre

Honors Scholar Theses

Abnormal ocular motility is a common manifestation of many underlying pathologies particularly those that are neurological. Dynamics of saccades, when the eye rapidly changes its point of fixation, have been characterized for many neurological disorders including concussions, traumatic brain injuries (TBI), and Parkinson’s disease. However, widespread saccade analysis for diagnostic and research purposes requires the recognition of certain eye movement parameters. Key information such as velocity and duration must be determined from data based on a wide set of patients’ characteristics that may range in eye shapes and iris, hair and skin pigmentation [36]. Previous work on saccade analysis ...


Identifying Fake News Using Emotion Analysis, Brady Gilleran May 2019

Identifying Fake News Using Emotion Analysis, Brady Gilleran

Computer Science and Computer Engineering Undergraduate Honors Theses

This paper presents research applying Emotional Analysis to “Fake News” and “Real News” articles to investigate whether or not there is a difference in the emotion used in these two types of news articles. The paper reports on a dataset for Fake and Real News that we created, and the natural language processing techniques employed to process the collected text. We use a lexicon that includes predefined words for eight emotions (anger, anticipation, disgust, fear, surprise, sadness, joy, trust) to measure the emotional impact in each of these eight dimensions. The results of the emotion analysis are used as features ...


Modeling And Counteracting Exposure Bias In Recommender Systems., Sami Khenissi May 2019

Modeling And Counteracting Exposure Bias In Recommender Systems., Sami Khenissi

Electronic Theses and Dissertations

Recommender systems are becoming widely used in everyday life. They use machine learning algorithms which learn to predict our preferences and thus influence our choices among a staggering array of options online, such as movies, books, products, and even news articles. Thus what we discover and see online, and consequently our opinions and decisions, are becoming increasingly affected by automated predictions made by learning machines. Similarly, the predictive accuracy of these learning machines heavily depends on the feedback data, such as ratings and clicks, that we provide them. This mutual influence can lead to closed-loop interactions that may cause unknown ...