Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Energy storage

Discipline
Institution
Publication
Publication Type

Articles 1 - 19 of 19

Full-Text Articles in Engineering

Low Temperature Liquid Metal Batteries For Energy Storage Applications, Cameron A. Lippert, Kunlei Liu, James Landon, Susan A. Odom, Nicolas E. Holubowitch Dec 2019

Low Temperature Liquid Metal Batteries For Energy Storage Applications, Cameron A. Lippert, Kunlei Liu, James Landon, Susan A. Odom, Nicolas E. Holubowitch

Center for Applied Energy Research Faculty Patents

The present invention relates to a molten metal battery of liquid bismuth and liquid tin electrodes and a eutectic electrolyte. The electrodes may be coaxial and coplanar. The eutectic electrolyte may be in contact with a surface of each electrode. The eutectic electrolyte may comprise ZnC12:KCI.


Optimal Allocation Of Energy Storage And Wind Generation In Power Distribution Systems, Carlos Mendoza Dec 2019

Optimal Allocation Of Energy Storage And Wind Generation In Power Distribution Systems, Carlos Mendoza

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The advent of energy storage technologies applications for the electric power system gives new tools for planners to cope with the operation challenges that come from the integration of renewable generation in medium voltage networks. This work proposes and implements an optimization model for Battery Energy Storage System (BESS) and distributed generation allocation in radial distribution networks. The formulation aims to assist distribution system operators in the task of making decisions on energy storage investment, BESSs' operation, and distributed generation penetration's level to minimize electricity costs. The BESSs are required to participate in energy arbitrage and voltage control. In addition, …


Proactive Energy Optimization In Residential Buildings With Weather And Market Forecasts, Cody Simmons, Joshua Arment, Kody M. Powell, John Hedengren Dec 2019

Proactive Energy Optimization In Residential Buildings With Weather And Market Forecasts, Cody Simmons, Joshua Arment, Kody M. Powell, John Hedengren

Faculty Publications

This work explores the development of a home energy management system (HEMS) that uses weather and market forecasts to optimize the usage of home appliances and to manage battery usage and solar power production. A Moving Horizon Estimation (MHE) application is used to find the unknown home model parameters. These parameters are then updated in a Model Predictive Controller (MPC) which optimizes and balances competing comfort and economic objectives. Combining MHE and MPC applications alleviates model complexity commonly seen in HEMS by using a lumped parameter model that is adapted to fit a high-fidelity model. Heating, ventilation, and air conditioning …


Data Analytics And Machine Learning To Enhance The Operational Visibility And Situation Awareness Of Smart Grid High Penetration Photovoltaic Systems, Aditya Sundararajan Nov 2019

Data Analytics And Machine Learning To Enhance The Operational Visibility And Situation Awareness Of Smart Grid High Penetration Photovoltaic Systems, Aditya Sundararajan

FIU Electronic Theses and Dissertations

Electric utilities have limited operational visibility and situation awareness over grid-tied distributed photovoltaic systems (PV). This will pose a risk to grid stability when the PV penetration into a given feeder exceeds 60% of its peak or minimum daytime load. Third-party service providers offer only real-time monitoring but not accurate insights into system performance and prediction of productions. PV systems also increase the attack surface of distribution networks since they are not under the direct supervision and control of the utility security analysts.

Six key objectives were successfully achieved to enhance PV operational visibility and situation awareness: (1) conceptual cybersecurity …


Measurement And Estimation Of The Equivalent Circuit Parameters For Multi-Mw Battery Systems, Oluwaseun M. Akeyo, Vandana Rallabandi, Nicholas Jewell, Dan M. Ionel Sep 2019

Measurement And Estimation Of The Equivalent Circuit Parameters For Multi-Mw Battery Systems, Oluwaseun M. Akeyo, Vandana Rallabandi, Nicholas Jewell, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper proposes and validates through simulations and measurements, a procedure for the determining the equivalent circuit parameters of large utility-scale batteries. It is considered that a large battery includes multiple cells connected in series and parallel, and therefore, its equivalent circuit can be represented as a series-parallel network of state of charge (SOC) dependent resistors and capacitors. Tests for determining these equivalent circuit parameters are proposed. These tests involve subjecting the battery energy storage system (BESS) to multiple charge and discharge cycles, while monitoring the terminal voltage and current response. A method for post-processing and analyzing the measurements in …


Modeling And Simulation Of A Utility-Scale Battery Energy Storage System, Oluwaseun M. Akeyo, Vandana Rallabandi, Nicholas Jewell, Dan M. Ionel Aug 2019

Modeling And Simulation Of A Utility-Scale Battery Energy Storage System, Oluwaseun M. Akeyo, Vandana Rallabandi, Nicholas Jewell, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper presents the modeling and simulation study of a utility-scale MW level Li-ion based battery energy storage system (BESS). A runtime equivalent circuit model, including the terminal voltage variation as a function of the state of charge and current, connected to a bidirectional power conversion system (PCS), was developed based on measurements from an operational utility-scale battery demonstrator. The accelerated response of the battery unit was verified by pulse discharging it from maximum to minimum SOC and its application for grid resiliency was demonstrated through an example droop control frequency response. For the purpose of validating the equivalent BESS …


Proactive Energy Optimization In Residential Buildings With Weather And Market Forecasts, Cody Ryan Simmons Jul 2019

Proactive Energy Optimization In Residential Buildings With Weather And Market Forecasts, Cody Ryan Simmons

Theses and Dissertations

This work explores the development of a home energy management system (HEMS) that uses weather and market forecasts to optimize the usage of home appliances and to manage battery usage and solar power production. A Moving Horizon Estimation (MHE) application is used to find the unknown home model parameters. These parameters are then updated in a Model Predictive Controller (MPC) which optimizes and balances competing comfort and economic objectives. Combining MHE and MPC applications alleviates model complexity commonly seen in HEMS by using a lumped parameter model that is adapted to fit a high-fidelity model. HVAC on/off behaviors are simulated …


Transient Analysis Of Diffusion-Induced Deformation In A Viscoelastic Electrode, Yaohong Suo, Fuqian Yang Jun 2019

Transient Analysis Of Diffusion-Induced Deformation In A Viscoelastic Electrode, Yaohong Suo, Fuqian Yang

Chemical and Materials Engineering Faculty Publications

In this study, we analyze the transient diffuse-induced-deformation of an electrode consisting of the conducting polymer polypyrrole (PPY) by using the theories of linear viscoelasticity and diffusion-induced stress. We consider two constitutive relationships with dependence of viscosity on strain rate: Kelvin-Voigt model and three-parameter solid model. A numerical method is used to solve the problem of one-dimensional, transient diffusion-induced-deformation under potentiostatic operation. The numerical results reveal that the maximum displacement occurs at the free surface and the maximum stress occurs at the fixed end. The inertia term causes the stress to increase at the onset of lithiation. The stress decreases …


Synthesis And Characterization Of Dielectric And Multiferroic Nanocrystalline Transition Metal Oxide Materials And Nanocomposites, Frederick A. Pearsall May 2019

Synthesis And Characterization Of Dielectric And Multiferroic Nanocrystalline Transition Metal Oxide Materials And Nanocomposites, Frederick A. Pearsall

Dissertations, Theses, and Capstone Projects

Nanocrystalline transition metal oxides with unique chemical, physical, magnetic and dielectric properties have very broad applications, ranging from photocatalysis, capacitor energy storage and 4-state memory. Frequency stable, high permittivity nanocomposite capacitors produced under mild processing conditions offer an attractive replacement to MLCCs derived from conventional ceramic firing. In one project reported herein, 0-3 nanocomposites were prepared using BaTiO3 (barium titanate, BTO) nanocrystals, suspended in a poly(furfuryl alcohol) matrix, resulting in a stable, high effective permittivity, low and stable loss dielectric. Effective medium approximations were used to compare this with similar nanocomposite systems. The use of synthesized BTO nanocrystal photocatalysts …


Enhanced Carbon Dioxide Electrolysis At Redox Manipulated Interfaces, Wenyuan Wang, Lizhen Gan, John P. Lemmon, Fanglin Chen, John T. S. Irvine, Kui Xie Apr 2019

Enhanced Carbon Dioxide Electrolysis At Redox Manipulated Interfaces, Wenyuan Wang, Lizhen Gan, John P. Lemmon, Fanglin Chen, John T. S. Irvine, Kui Xie

Faculty Publications

Utilization of carbon dioxide from industrial waste streams offers significant reductions in global carbon dioxide emissions. Solid oxide electrolysis is a highly efficient, high temperature approach that reduces polarization losses and best utilizes process heat; however, the technology is relatively unrefined for currently carbon dioxide electrolysis. In most electrochemical systems, the interface between active components are usually of great importance in determining the performance and lifetime of any energy materials application. Here we report a generic approach of interface engineering to achieve active interfaces at nanoscale by a synergistic control of materials functions and interface architectures. We show that the …


Solid State Polyaniline Supercapacitors Based On Electrodes Fabricated With Electropolymerization, Jonathan R. Blincoe Apr 2019

Solid State Polyaniline Supercapacitors Based On Electrodes Fabricated With Electropolymerization, Jonathan R. Blincoe

Electrical & Computer Engineering Theses & Dissertations

Supercapacitors are energy storage devices with the potential to overshadow lithium-ion batteries in the energy storage sector. Generally supercapacitors store less energy than a lithium-ion battery, but make up for it with much higher power densities that allow supercapacitors to charge and discharge quickly. This can be through the formation of an electric double layer or faradaic phenomenon between the electrode and electrolyte. The energy storage mechanism relies heavily on the electrode material and the ions contained within the electrolyte. In this research, polyaniline was used as an active material to prepare supercapacitors. Polyaniline is a conductive polymer that is …


Sorption-Based Energy Storage Systems: A Review, Kyaw Thu, Nasruddin Nasruddin, Sourav Mitra, Bidyut Baran Saha Apr 2019

Sorption-Based Energy Storage Systems: A Review, Kyaw Thu, Nasruddin Nasruddin, Sourav Mitra, Bidyut Baran Saha

Makara Journal of Technology

Mismatched timing between the supply and demand of energy calls for reliable storage systems. Energy storage systems have become further significant with the widespread implementation of renewable energy. These systems can mitigate problems that are often associated with renewable energy sources such as supply unreliability while meeting the de-mand during peak hours. Energy can be stored in various forms, yet storage systems can be generally grouped based on their output forms, namely (i) electricity and (ii) heat or thermal energy. Electrical energy is the most convenient and effective form since it can power almost all modern devices. However, the electricity …


Ammonia Production From A Non-Grid Connected Floating Offshore Wind-Farm: A System-Level Techno-Economic Review, Vismay V. Parmar Mar 2019

Ammonia Production From A Non-Grid Connected Floating Offshore Wind-Farm: A System-Level Techno-Economic Review, Vismay V. Parmar

Masters Theses

According to U.S. Department of Energy, offshore wind energy has the potential to generate 7,200 TWh of energy annually, which is nearly twice the current annual energy consumption in the United States. With technical advances in the offshore wind industry, particularly in the floating platforms, windfarms are pushing further into the ocean. This creates new engineering challenges for transmission of energy from offshore site to onshore. One possible solution is to convert the energy produced into chemical energy of ammonia, which was investigated by Dr. Eric Morgan. In his doctoral dissertation, he assessed the technical requirements and economics of a …


Carbon Capture And Synergistic Energy Storage: Performance And Uncertainty Quantification, Christopher Stephen Russell Feb 2019

Carbon Capture And Synergistic Energy Storage: Performance And Uncertainty Quantification, Christopher Stephen Russell

Theses and Dissertations

Energy use around the world will rise in the coming decades. Renewable energy sources will help meet this demand, but renewable sources suffer from intermittency, uncontrollable power supply, geographic limitations, and other issues. Many of these issues can be mitigated by introducing energy storage technologies. These technologies facilitate load following and can effectively time-shift power. This analysis compares dedicated and synergistic energy storage technologies using energy efficiency as the primary metric.
Energy storage will help renewable sources come to the grid, but fossil fuels still dominate energy sources for decades to come in nearly all projections. Carbon capture technologies can …


Solar Thermoelectricity Via Advanced Latent Heat Storage, Michele L. Olsen, Eric S. Toberer, David S. Ginley, Philip A. Parilla, Emily L. Warren, Aaron D. Martinez, Jonathan E. Rea, Corey Lee Hardin, Christopher J. Oshman, Nathan P. Siegel Feb 2019

Solar Thermoelectricity Via Advanced Latent Heat Storage, Michele L. Olsen, Eric S. Toberer, David S. Ginley, Philip A. Parilla, Emily L. Warren, Aaron D. Martinez, Jonathan E. Rea, Corey Lee Hardin, Christopher J. Oshman, Nathan P. Siegel

Other Faculty Research and Publications

An aspect of the present disclosure is a system that includes a thermal valve having a first position and a second position, a heat transfer fluid, and an energy converter where, when in the first position, the thermal valve prevents the transfer of heat from the heat transfer fluid to the energy converter, and when in the second position, the thermal valve allows the transfer of heat from the heat transfer fluid to the energy converter, such that at least a portion of the heat transferred is converted to electricity by the energy converter.


Increasing Distribution Grid Hosting Capacity Through Wire And Non-Wire Solutions, Abdulrahman N. Almazroui Jan 2019

Increasing Distribution Grid Hosting Capacity Through Wire And Non-Wire Solutions, Abdulrahman N. Almazroui

Electronic Theses and Dissertations

Increased deployment of distributed generation (DG) can adversely impact the operational performance of distribution networks. This increment can potentially change network power flow and result in several operational issues such as reduced power quality, overvoltage, and ineffective protection. In order to quantify the degradation bounds of distribution operation due to increasing DG integration, the concept of hosting capacity is introduced. The aim of this thesis is to increase the DG hosting capacity in distribution network by proposing several wire and non-wire solutions. To this end, these solutions include network reconfiguration, reactive power control, and energy storage system deployment. The network …


Incorporating Battery Energy Storage Systems Into Multi-Mw Grid Connected Pv Systems, Vandana Rallabandi, Oluwaseun M. Akeyo, Nicholas Jewell, Dan M. Ionel Jan 2019

Incorporating Battery Energy Storage Systems Into Multi-Mw Grid Connected Pv Systems, Vandana Rallabandi, Oluwaseun M. Akeyo, Nicholas Jewell, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper analyzes the configuration, design, and operation of multi-MW grid connected solar photovoltaic (PV) systems with practical test cases provided by a 10-MW field development. In order to improve the capacity factor, the PV system operates at its maximum power point during periods of lower irradiance, and the power output is limited to a rated value at high irradiance. The proposed configuration also incorporates a utility scale battery energy storage system (BESS) connected to the grid through an independent inverter and benefits of the experience gained with a 1-MW 2-MWh BESS large demonstrator. The BESS power smoothing and frequency …


A Sustainable Prototype For Renewable Energy: Optimized Prime-Power Generator Solar Array Replacement, Nathan Thomsen, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt Jan 2019

A Sustainable Prototype For Renewable Energy: Optimized Prime-Power Generator Solar Array Replacement, Nathan Thomsen, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt

Faculty Publications

Remote locations such as disaster relief camps, isolated arctic communities, and military forward operating bases are disconnected from traditional power grids forcing them to rely on diesel generators with a total installed capacity of 10,000 MW worldwide. The generators require a constant resupply of fuel, resulting in increased operating costs, negative environmental impacts, and challenging fuel logistics. To enhance remote site sustainability, planners can develop stand-alone photovoltaic-battery systems to replace existing prime power generators. This paper presents the development of a novel cost-performance model capable of optimizing solar array and Li-ion battery storage size by generating tradeoffs between minimizing initial …


Lignocellulosic Biomass Derived Activated Carbon For Energy Storage And Adsorption, Changle Jiang Jan 2019

Lignocellulosic Biomass Derived Activated Carbon For Energy Storage And Adsorption, Changle Jiang

Graduate Theses, Dissertations, and Problem Reports

Lignocellulosic biomass has been converted to hierarchical porous carbon materials which possess macro-, meso- and micro-pores. The natural structure of porous lignocellulosic structure was preserved during activation with further developed porosity by the activation. The activated carbon can be well applied to electrochemical double layer capacitor for transportation storage of ions as well as adsorbent materials for metal ion removal from wastewater.

The first chapter of this dissertation presents an introduction of biomass derived carbon and its applications. In the second chapter, both direct and indirect activation methods using carbon dioxide were adopted in this study. The results show that …