Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Effects Of Infiltration Temperature, Time, And Gas Flow Rate On Material Properties Of Carbon Infiltration Carbon Nanotubes, Shane Dirk Sypherd Sep 2019

Effects Of Infiltration Temperature, Time, And Gas Flow Rate On Material Properties Of Carbon Infiltration Carbon Nanotubes, Shane Dirk Sypherd

Theses and Dissertations

This work characterizes the material properties of carbon infiltrated carbon nanotube (CI- CNT) structures. The impacts of temperature, time, and hydrogen flow rates on the material prop- erties of modulus of elasticity and strength are examined and compared. Carbon infiltration levels are assessed through the use of SEM images to determine which parameters give the highest level of infiltration. Through the use of SEM, carbon capping is observed on samples infiltrated for longer times at 900 and 950◦ C, suggesting that the samples are not being infiltrated during the entire desired infiltration period at these temperatures. The highest material properties ...


Design And Predicting Performance Of Carbon Nanotube Reinforced Cementitious Materials : Mechanical Properties And Dipersion Characteristics., Mahyar Ramezani Aug 2019

Design And Predicting Performance Of Carbon Nanotube Reinforced Cementitious Materials : Mechanical Properties And Dipersion Characteristics., Mahyar Ramezani

Electronic Theses and Dissertations

Recently, Carbon Nanotubes (CNTs) are drawing considerable attention of researchers for reinforcing cementitious materials due to their excellent mechanical properties and high aspect ratio (length-to-diameter ratio). However, CNTs might not disperse well within the cement matrix, resulting in little improvement or even degradation of concrete properties. The uncertainty in producing the consistent results in different studies might be attributed to multiple interactions between the experimental variables affecting the nanotube dispersion and the final properties of CNT-cement nanocomposites. Therefore, this research mainly focused on proposing equations that can reliably capture these interactions in order to correlate CNT dispersion with the mechanical ...


Functional Porous Polydimethlysiloxane As Piezoresistive And Piezoelectric Materials, Taissa Rose Michel Jul 2019

Functional Porous Polydimethlysiloxane As Piezoresistive And Piezoelectric Materials, Taissa Rose Michel

Theses and Dissertations

In this paper, polydimethylsiloxane (PDMS), carbon nanotubes (CNTs), and zinc oxide (ZnO) were combined to create functionalized piezoresistive and piezoelectric sensors for pressure sensing and energy harvesting. Samples were foamed to show that the increased deformability of the foam sensors makes them suitable for a range of applications including dexterous robotics, tactile sensing, energy harvesting, and biosensing. Uniform dispersion of CNTs was achieved with chloroform as the solvent. Samples were foamed using chemical blowing and scaffolding but granulated sugar at 70% porosity resulted in foamed samples with the most consistent mechanical properties. Samples underwent tensile and compressive testing for their ...


Degradation Of Emerging Contaminants By Advanced Oxidation Using Multi-Walled Carbon Nanotubes And Continuous Ozone Injection, Emily N. Miller Jun 2019

Degradation Of Emerging Contaminants By Advanced Oxidation Using Multi-Walled Carbon Nanotubes And Continuous Ozone Injection, Emily N. Miller

Master's Theses

With a growing population and continuous accumulation of pollutants, water resources worldwide are quickly being depleted. Drastic improvements need to be made in both water conservation and treatment. Advanced oxidation processes (AOPs) have been developed to go above and beyond the capabilities of traditional wastewater treatment facilities to eliminate emerging contaminants from our water systems. AOPs increase the generation of hydroxyl radicals (•OH) in oxidation reactions, which are less selective and more reactive than other oxidants, such as ozone, so they are more effective at degrading persistent compounds. This study explored an AOP that utilizes ozonated multi-walled carbon nanotubes (MWCNTs ...


Efficient Methods For Robust Circuit Design And Performance Optimization For Carbon Nanotube Field Effect Transistors, Muhammad Ali Mar 2019

Efficient Methods For Robust Circuit Design And Performance Optimization For Carbon Nanotube Field Effect Transistors, Muhammad Ali

Dissertations and Theses

Carbon nanotube field-effect transistors (CNFETs) are considered to be promising candidate beyond the conventional CMOSFET due to their higher current drive capability, ballistic transport, lesser power delay product and higher thermal stability. CNFETs show great potential to build digital systems on advanced technology nodes with big benefits in terms of power, performance and area (PPA). Hence, there is a great need to develop proven models and CAD tools for performance evaluation of CNFET-based circuits. CNFETs specific parameters, such as number of tubes, pitch (spacing between the tubes) and diameter of CNTs determine current driving capability, speed, power consumption and area ...