Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Engineering

Nonlinear Characterizing Of A New Titanium Nitride On Aluminum Oxide Metalens, Michael A. Cumming Oct 2019

Nonlinear Characterizing Of A New Titanium Nitride On Aluminum Oxide Metalens, Michael A. Cumming

Theses and Dissertations

A sample metalens generated from Titanium Nitride deposited onto Aluminum Oxide was designed to focus at 10 microns with a beam centered at 800nm, and when analyzed with high intensity illumination was found to have a focal length of 9.650 ±.003µm at an intensity of 16.93[MW/cm2 ]. Analyzing this change by comparing it to a Fresnel Lens’ physics shows that for this lens, the effective nonlinear index of refraction is certainly greater than the nonlinear index of just Titanium Nitride itself, at −1.6239 × 10−15[m2/W] compared to the materials −1.3 × 10−15[m2 …


Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton Sep 2019

Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton

Theses and Dissertations

Digital holography (DH) uses coherent detection and offers direct access to the complex-optical field to sense and correct image aberrations in low signal-to-noise environments, which is critical for tactical applications. The performance of DH is compared to a similar, well studied deep-turbulence wavefront sensor, the self-referencing interferometer (SRI), with known efficiency losses. Wave optics simulations with deep-turbulence conditions and noise were conducted and the results show that DH outperforms the SRI by 10's of dB due to DH's strong reference. Additionally, efficiency experiments were conducted to investigate DH system losses. The experimental results show that the mixing efficiency (37%) is …


Targeted Germanium Ion Irradiation Of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistors, Melanie E. Mace Aug 2019

Targeted Germanium Ion Irradiation Of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistors, Melanie E. Mace

Theses and Dissertations

Microscale beams of germanium ions were used to target different locations of aluminum galliumnitride/gallium nitride (AlGaN/GaN) high electron mobility transistors (HEMTs) to determine location dependent radiation effects. 1.7 MeV Ge ions were targeted at the gap between the gate and the drain to observe displacement damage effects while 47 MeV Ge ions were targeted at the gate to observe ionization damage effects. Electrical data was taken pre, during, and post irradiation. To separate transient from permanent degradation, the devices were characterized after a room temperature anneal for at least 30 days. Optical images were also analyzed pre and post irradiation. …


On The Pulsed Laser Ablation Of Metals And Semiconductors, Todd A. Van Woerkom Aug 2019

On The Pulsed Laser Ablation Of Metals And Semiconductors, Todd A. Van Woerkom

Theses and Dissertations

This dissertation covers pulsed laser ablation of Al, Si, Ti, Ge, and InSb, with pulse durations from tens of picosecond to hundreds of microseconds, fluences from ones of J/cm2 to over 10,000 J/cm2, and in ambient air and vacuum. A set of non-dimensional scaling factors was created to interpret the data relative to the laser and material parameters, and it was found that pulse durations shorter than a critical timescale formed craters much larger than the thermal diffusion length, and longer pulse durations created holes much shallower than the thermal diffusion length. Low transverse order Gaussian beams …


Light Scattering In Diffraction Limit Infrared Imaging, Ghazal Azarfar Aug 2019

Light Scattering In Diffraction Limit Infrared Imaging, Ghazal Azarfar

Theses and Dissertations

Fourier Transform Infrared (FTIR) microspectroscopy is a noninvasive technique for chemical imaging of micrometer size samples. Employing an infrared microscope, an infrared source and FTIR spectrometer coupled to a microscope with an array of detectors (128 x 128 detectors), enables collecting combined spectral and spatial information simultaneously. Wavelength dependent images are collected, that reveal biochemical signatures of disease pathology and cell cycle. Single cell biochemistry can be evaluated with this technique, since the wavelength of light is comparable to the size of the objects of interest, which leads to additional spectral and spatial effects disturb biological signatures and can confound …


Computational And Experimental Development Of 2d Anisotropic Photonic Crystal Metamaterials, James A. Ethridge Mar 2019

Computational And Experimental Development Of 2d Anisotropic Photonic Crystal Metamaterials, James A. Ethridge

Theses and Dissertations

The future of optical devices involves manipulation of nanoscale structure in order to achieve full control over the properties of the device. In fields as diverse as directed energy, remote sensing, optical communications and optical computing, these devices promise to greatly improve performance and efficiency. To advance this further, novel samples that incorporate both photonic crystal (PhC) structure and metamaterial properties, known as PhC metamaterials, are proposed. These PhC metamaterials allow for complete control over the directionality of the light-matter interaction to serve in these new applications. To develop this technology, first, metamaterials with no PhC structure are fabricated using …


Designing Liquid Crystal For Optoacoustic Detection, Michael T. Dela Cruz Mar 2019

Designing Liquid Crystal For Optoacoustic Detection, Michael T. Dela Cruz

Theses and Dissertations

This research impacts the development of a cost-saving, on-chip device that can replace a wide range of costly, bulky sensors for commercial and defense applications. In particular, the goals of this work were to design and test a sensor that uses the optical properties of liquid crystal (LC) to detect acoustic waves. This began with developing a method to fine-tune the optical features of the liquid crystal. Statistical analysis of select experimental variables, or factors, lead to ideal settings of those variables when creating the sensor. A two-factor and three-factor experiment were separately conducted and analyzed as a preliminary demonstration …


Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer And Thermal Experimental Techniques, Luke J. Mcnamara Mar 2019

Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer And Thermal Experimental Techniques, Luke J. Mcnamara

Theses and Dissertations

With increasing engine temperatures, it is becoming more important to design effective film cooling schemes. Low temperature, large scale tests are often implemented in the design process to reduce cost and complexity. A nondimensional adiabatic effectiveness can be used as an indication of the performance of a film cooling scheme. However, the coolant flow rate must be properly scaled between the low temperature tests and engine temperatures to accurately predict film cooling effectiveness. This process is complicated by gas property variation with temperature. Tests are commonly conducted using thermal measurement techniques with infrared thermography (IR), but the use of pressure …


Direct Numerical Simulation Of Roughness Induced Hypersonic Boundary Layer Transition On A 7° Half-Angle Cone, Tara E. Crouch Mar 2019

Direct Numerical Simulation Of Roughness Induced Hypersonic Boundary Layer Transition On A 7° Half-Angle Cone, Tara E. Crouch

Theses and Dissertations

Direct numerical simulation (DNS) computational fluid dynamic (CFD) calculations were performed on a 30° slice of 7° half-angle cones with increasing nose radii bluntness at Mach 10 while simulating a distributed roughness pattern on the cone surface. These DNS computations were designed to determine if the non-modal transition behavior observed in testing performed at the Arnold Engineering Development Center (AEDC) Hypervelocity Wind Tunnel 9 was induced via distributed surface roughness. When boundary layer transition is dominated by second mode instabilities, an increase in nose radius delays the transition location downstream. However, blunt nose experiments indicated that as the nose radius …


Initial Stage Of Fluid-Structure Interaction Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves Mar 2019

Initial Stage Of Fluid-Structure Interaction Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves

Theses and Dissertations

The analysis of a celestial icosahedron geometry is considered as a potential design for a Vacuum Lighter than Air Vehicle (VLTAV). The goal of the analysis is ultimately to understand the initial fluid-structure interaction of the VLTAV and the surrounding airflow. Up to this point, previous research analyzed the celestial icosahedron VLTAV in relation to withstanding a symmetric sea-level pressure applied to the membrane of the structure. This scenario simulates an internal vacuum being applied in the worst-case atmospheric environmental condition. The next step in analysis is to determine the aerodynamic effects of the geometry. The experimental setup for obtaining …


Wall Model Large Eddy Simulation Of A Diffusing Serpentine Inlet Duct, Ryan J. Thompson Mar 2019

Wall Model Large Eddy Simulation Of A Diffusing Serpentine Inlet Duct, Ryan J. Thompson

Theses and Dissertations

The modeling focus on serpentine inlet ducts (S-duct), as with any inlet, is to quantify the total pressure recovery and ow distortion after the inlet, which directly impacts the performance of a turbine engine fed by the inlet. Accurate prediction of S-duct ow has yet to be achieved amongst the computational fluid dynamics (CFD) community to improve the reliance on modeling reducing costly testing. While direct numerical simulation of the turbulent ow in an S-duct is too cost prohibitive due to grid scaling with Reynolds number, wall-modeled large eddy simulation (WM-LES) serves as a tractable alternative. US3D, a hypersonic research …


Investigation Of Endwall Vortex Manipulation In High Lift Turbines Caused By Active Endwall Forcing, Horatio J. Babcock Mar 2019

Investigation Of Endwall Vortex Manipulation In High Lift Turbines Caused By Active Endwall Forcing, Horatio J. Babcock

Theses and Dissertations

With the increased demand for lighter, more fuel efficient and smaller gas turbine engines, the impetus to reduce the weight and size of the turbine has become apparent. One approach to reduce this weight is to reduce the number of blades in the turbine. However, to maintain power output, each blade must be capable of supporting a greater amount of lift. While several high-lift turbine profiles have been detailed in literature, most of these profiles have increased endwall losses, despite their desirable mid-span characteristics. To mitigate this endwall loss, a number of active and passive flow approaches have been studied …


Schlieren Imaging And Flow Analysis On A Cone/Flare Model In The Afrl Mach 6 Ludwieg Tube Facility, David A. Labuda Mar 2019

Schlieren Imaging And Flow Analysis On A Cone/Flare Model In The Afrl Mach 6 Ludwieg Tube Facility, David A. Labuda

Theses and Dissertations

High-speed Schlieren photography was utilized to visualize flow in the Air Force Research Laboratory Mach 6 Ludwieg tube facility. A 7° half-angle cone/flare model with variable nosetip radius and flare angle options was used in the study. Testing was performed at two driver tube pressures, generating freestream Reynolds numbers of 10.0x106 and 19.8x106 per meter. The variable-angle flare portion of the model provided a method for adjusting the intensity of the adverse pressure gradient at the cone/flare junction. As expected from existing literature, boundary layer separation along the cone frustum occurred further upstream as the magnitude of the …


Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung Mar 2019

Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung

Theses and Dissertations

A recent research effort, sponsored by the Air Force Office of Scientific Research, numerically investigated the unsteady aerodynamic flow field around an oscillating, straked, delta wing. The study was centered on determining the importance of the unsteady aerodynamic forces acting as a driver for a nonlinear motion known as limit cycle oscillations. The current effort focused on creating a computational model to compare to the results of previous tests and modeling efforts and discover new information regarding the onset of LCO. The computational model was constructed using the Cartesian overset capabilities of the CREATE-AV™ fixed wing fluid dynamics solver Kestrel. …


Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack Mar 2019

Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack

Theses and Dissertations

The Ultra Compact Combustor (UCC) promises to greatly reduce the size of a gas turbine engine’s combustor by altering the manner in which fuel is burnt. Differing from the common axial flow combustor, the UCC utilizes a rotating flow, coaxial to the engine’s primary axis, in an outboard circumferential cavity as the primary combustion zone. The present study investigates two key UCC facets required to further this combustor design. The first area of investigation is cooling of the Hybrid Guide Vane (HGV). This UCC specific hardware acts as a combustor center body that alters the exit flow angle and acts …


Analytical Models And Control Design Approaches For A 6 Dof Motion Test Apparatus, Kyra L. Schmidt Mar 2019

Analytical Models And Control Design Approaches For A 6 Dof Motion Test Apparatus, Kyra L. Schmidt

Theses and Dissertations

Wind tunnels play an indispensable role in the process of aircraft design, providing a test bed to produce valuable, accurate data that can be extrapolated to actual flight conditions. Historically, time-averaged data has made up the bulk of wind tunnel research, but modern flight design necessitates the use of dynamic wind tunnel testing to provide time-accurate data for high frequency motion. This research explores the use of a 6 degree of freedom (DOF) motion test apparatus (MTA) in the form of a robotic arm to allow models inside a subsonic wind tunnel to track prescribed trajectories to obtain time-accurate force …


Computational Aerothermodynamic Analysis Of Satellite Trans-Atmospheric Skip Entry Survivability, John J. Runco Mar 2019

Computational Aerothermodynamic Analysis Of Satellite Trans-Atmospheric Skip Entry Survivability, John J. Runco

Theses and Dissertations

Computational aerothermodynamic analysis is presented for a spacecraft in low Earth orbit performing an atmospheric skip entry maneuver. Typically, atmospheric reentry is a terminal operation signaling mission end-of-life and, in some instances, executed for spacecraft disposal. A variation on reentry – skip entry – is an aeroassisted trans-atmospheric maneuver in which a spacecraft utilizes the effects of aerodynamic drag in order to reduce energy prior to a terminal entry, pinpoint a targeted entry, or change orbital elements such as inclination. Spacecraft performing a skip entry enable new modes of maneuver to enhance operations in nominal or possibly contested mission environments. …


Infrared And Electro-Optical Stereo Vision For Automated Aerial Refueling, William E. Dallmann Mar 2019

Infrared And Electro-Optical Stereo Vision For Automated Aerial Refueling, William E. Dallmann

Theses and Dissertations

Currently, Unmanned Aerial Vehicles are unsafe to refuel in-flight due to the communication latency between the UAVs ground operator and the UAV. Providing UAVs with an in-flight refueling capability would improve their functionality by extending their flight duration and increasing their flight payload. Our solution to this problem is Automated Aerial Refueling (AAR) using stereo vision from stereo electro-optical and infrared cameras on a refueling tanker. To simulate a refueling scenario, we use ground vehicles to simulate a pseudo tanker and pseudo receiver UAV. Imagery of the receiver is collected by the cameras on the tanker and processed by a …


Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed Jan 2019

Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed

Theses and Dissertations

Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation …


Adhesion At Solid/Liquid Interfaces, Neda Ojaghlou Jan 2019

Adhesion At Solid/Liquid Interfaces, Neda Ojaghlou

Theses and Dissertations

The adhesion at solid/liquid interface plays a fundamental role in diverse fields and helps explain the structure and physical properties of interfaces, at the atomic scale, for example in catalysis, crystal growth, lubrication, electrochemistry, colloidal system, and in many biological reactions. Unraveling the atomic structure at the solid/liquid interface is, therefore, one of the major challenges facing the surface science today to understand the physical processes in the phenomena such as surface coating, self-cleaning, and oil recovery applications. In this thesis, a variety of theory/computational methods in statistical physics and statistical mechanics are used to improve understanding of water adhesion …