Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Mobile Ad Hoc Networks In Transportation Data Collection And Dissemination, Kardigue Konte Oct 2019

Mobile Ad Hoc Networks In Transportation Data Collection And Dissemination, Kardigue Konte

Theses and Dissertations

The field of transportation is rapidly changing with new opportunities for systems solutions and emerging technologies. The global economic impact of congestion and accidents are significant. Improved means are needed to solve them. Combined with the increasing numbers of vehicles on the road, the net economic impact is measured in the many billions of dollars. Promising methodologies explored in this thesis include the use of the Internet of Things (IoT) and Mobile Ad Hoc Networks (MANET). Interconnecting vehicles using Dedicated Short Range Communication technology (DSRC) brings many benefits. Integrating DSRC into roadway vehicles offers the promise of reducing the problems ...


Exploring Intercultural Wonderment As A Mediator For Global Perspective Development In Engineering Students, John A. Schneider Oct 2019

Exploring Intercultural Wonderment As A Mediator For Global Perspective Development In Engineering Students, John A. Schneider

Theses and Dissertations

The purpose of this study is to investigate the mediatory role intercultural wonderment plays in global learning during engineering students' international experiences. Engberg and colleagues have posited a connection between the programmatic components of an international experience (i.e., study abroad) and global learning, with international wonderment serving as a conduit for that connection. Qualitative and quantitative data were collected under an NSF multi-institutional grant that focused on identifying ways global preparedness can be developed in and out of formal curricula. Data included semi-structured, student interviews, student background data, and global perspective scores as measured by the Global Perspective Inventory ...


The Impact Of Patient-Specific Vascular Structure On Localized Cooling In The Human Heart, Nathan Paul Spangenberg Sep 2019

The Impact Of Patient-Specific Vascular Structure On Localized Cooling In The Human Heart, Nathan Paul Spangenberg

Theses and Dissertations

Acute Myocardial Infarction (AMI) is the leading cause of worldwide death and disability, and approximately 720,000 Americans will experience an AMI in 2018. Studies have shown that rapid hypothermia therapy (<35°C) before reperfusion in patients with AMI can reduce infarct size by 37%. Localized therapeutic hypothermia has proven the potential to cool heart tissue rapidly following AMI, 3°C in 5 minutes. Using Materialise Mimics digital imaging software and the finite volume method we analyzed temperature distributions in six patient-specific left main coronary artery (LMCA) models. A mock circulatory loop was used to determine the exiting temperatures of a standard 7 Fr catheter to feed into our model with flow rates ranging from 29.2 ml/min to 68.85 ml/min. Our work showed that therapeutic hypothermia (TH) temperatures were evident at the outlets of three out of all six heart models, which varied in each left anterior descending (LAD) and left circumflex (LCX) artery depending on flowrate. Results of this study indicate that biovariability in patient-specific vascular structures significantly impacts therapeutic hypothermia (TH) treatment methods. These results indicate that further research is needed to examine more accurate physiological effects, such as pulsatile flow and vessel wall thickness. Future models will be used to provide insight to guide more efficient TH device designs and operation parameters to optimize patient outcomes following AMI.


Initial Development Of A Prototype Sensor Testbed For Fetal Monitoring, Christian Beauvais Aug 2019

Initial Development Of A Prototype Sensor Testbed For Fetal Monitoring, Christian Beauvais

Theses and Dissertations

The objective of this research is to design and manufacture a device that exhibits some of the bio-physiological signals relevant to fetal health monitoring. Currently, limited options exist for testing the performance of monitoring devices such as the tocodynamometer (TOCO) and electrocardiograph (ECG) that measure the bio-physiological signals of a woman and her fetus. Sensor designers need ways of generating and acquiring signals that do not carry the ethical burden of human testing. The development of such a device, as considered in this work, may involve using muscle wire or an inflatable tube as prospective foundations for simulating uterine contraction ...


Laboratory Evaluation Of Cold In-Place Recycling Asphalt Mixtures Using A Balanced Mix Design, Ahmed Saidi Aug 2019

Laboratory Evaluation Of Cold In-Place Recycling Asphalt Mixtures Using A Balanced Mix Design, Ahmed Saidi

Theses and Dissertations

The objective of this research study is to present a procedure for designing Cold In-Place Recycling (CIR) mixtures through balancing cracking and rutting for these mixtures. Eight CIR mixtures were prepared using two recycling agents (foamed and emulsified asphalts), then cured for three days at two temperatures (140oF and 50oF), and compacted at two gyration levels (30 and 70 gyrations). The CIR mixtures were prepared at constant dosages of water and cement, 3% and 1%, respectively. Air void of each CIR performance test specimen was determined using the CoreLok device. The rutting susceptibility of these mixtures was then evaluated using ...


Long-Term Performance Of Sustainable Pavements Using Ternary Blended Concrete With Recycled Aggregates, Seth M. Wagner Aug 2019

Long-Term Performance Of Sustainable Pavements Using Ternary Blended Concrete With Recycled Aggregates, Seth M. Wagner

Theses and Dissertations

The purposes of this study were to (a) design concrete pavement mixtures with recycled concrete aggregates using ternary blends of cementitious materials and a low water-to-binder ratio, (b) measure the fresh and hardened properties of the proposed concrete mixtures and (c) assess the long-term performance of the concrete implementing the use of recycled coarse aggregates. Preliminary investigation into ternary blend combinations via the compressive testing of mortar cubes and isothermal calorimetry was used to predict an optimal blend of cementitious material. Mixes using recycled concrete aggregates at varying replacement rates were tested for fresh and hardened properties using the proposed ...


Implementation And Analysis Of The Iso/Iec/Ieee P21451-1 Draft Standard For A Smart Transducer Interface Common Network Services And Its Applications In The Internet Of Things, Russell Henry Albert Trafford Jul 2019

Implementation And Analysis Of The Iso/Iec/Ieee P21451-1 Draft Standard For A Smart Transducer Interface Common Network Services And Its Applications In The Internet Of Things, Russell Henry Albert Trafford

Theses and Dissertations

The Internet of Things (IoT) has rapidly become the paradigm for the creation and improvement of new and old Cyber Physical Systems (CPS), but how much longer can this development of IoT devices, networks, and services be sustained? The past decade has seen incredible growth in internet connected devices, with current estimates placing the number of such devices at about 20 billion in 2017, not including personal computers, smart phones, and tablets. This has created a massive market for these devices, with each company making their own applications, protocols, and services. Since these markets are competitive, there originally was no ...


Emotion Recognition Using Facial Feature Extraction, Demiyan Smirnov Jul 2019

Emotion Recognition Using Facial Feature Extraction, Demiyan Smirnov

Theses and Dissertations

Computerized emotion recognition systems can be powerful tools to help solve problems in a wide range of fields including education, healthcare, and marketing. Existing systems use digital images or live video to track facial expressions on a person's face and deduce that person's emotional state. The research presented in this thesis explores combinations of several facial feature extraction techniques with different classifier algorithms. Namely, the feature extraction techniques used in this research were Discrete Cosine/Sine Transforms, Fast Walsh-Hadamard Transform, Principle Component Analysis, and a novel method called XPoint. Features were extracted from both global (using the entire ...


Functional Porous Polydimethlysiloxane As Piezoresistive And Piezoelectric Materials, Taissa Rose Michel Jul 2019

Functional Porous Polydimethlysiloxane As Piezoresistive And Piezoelectric Materials, Taissa Rose Michel

Theses and Dissertations

In this paper, polydimethylsiloxane (PDMS), carbon nanotubes (CNTs), and zinc oxide (ZnO) were combined to create functionalized piezoresistive and piezoelectric sensors for pressure sensing and energy harvesting. Samples were foamed to show that the increased deformability of the foam sensors makes them suitable for a range of applications including dexterous robotics, tactile sensing, energy harvesting, and biosensing. Uniform dispersion of CNTs was achieved with chloroform as the solvent. Samples were foamed using chemical blowing and scaffolding but granulated sugar at 70% porosity resulted in foamed samples with the most consistent mechanical properties. Samples underwent tensile and compressive testing for their ...


Evaluation Of The Cracking Performance Of Geogrid-Reinforced Hot-Mix Asphalt For Airfield Applications, Daniel Offenbacker Jul 2019

Evaluation Of The Cracking Performance Of Geogrid-Reinforced Hot-Mix Asphalt For Airfield Applications, Daniel Offenbacker

Theses and Dissertations

The objective of this study was to evaluate the fatigue cracking performance of geogrid-reinforced Hot-Mix Asphalt (HMA) for use in airfield runways. An airfield HMA mixture with four different geogrid types were selected for this study. The geogrids varied in tensile strength, coating type, opening size, thickness, and fiber material. Several different laboratory performance tests were conducted (Dynamic Complex Modulus, DCM, Overlay Test, OT, and Indirect Tensile Strength, ITS) and the fatigue and/or cracking performance was evaluated. Additionally, different approaches were adopted or developed for the modeling of geogrids in HMA using Finite Element Modeling (FEM). Finally, a Life-Cycle ...


Inverted Cone Convolutional Neural Network For Deboning Mris, Oliver John Palumbo Jun 2019

Inverted Cone Convolutional Neural Network For Deboning Mris, Oliver John Palumbo

Theses and Dissertations

Data plenitude is the power but also the bottleneck for data-driven approaches, including neural networks. In particular, Convolutional Neural Networks (CNNs) require an abundant database of training images to achieve a desired high accuracy. Current techniques employed for boosting small datasets are data augmentation and synthetic data generation, which suffer from computational complexity and imprecision compared to original datasets. In this thesis, we intercalate prior knowledge based on the temporal relation between the images in the third dimension. Specifically, we compute the gradient of subsequent images in the dataset to remove extraneous information and highlight subtle variations between the images ...


Applying Internet Of Things Principles To Spacecraft, Brian K. Dixon May 2019

Applying Internet Of Things Principles To Spacecraft, Brian K. Dixon

Theses and Dissertations

This thesis proposes the adaptation of the IEEE 1451 Transducer Electronic Data Sheet (TEDS) for usage in spacecraft subsystems. In the 1990s, TEDS initially were developed as a standardized method to provide metadata required for the operation of a transducer by a microcontroller or data acquisition device. The metadata provides information that identifies and documents key characteristics of the transducer, thereby facilitating plug-and-play interoperability within a system and across networks. An overarching goal of this thesis is to make a case for adapting and extending the TEDS concept as a means for self-describing critical physical components of a CubeSat nanosatellite ...


Fabrication Of Enhanced Carbon Based Biocompatible And Biodegradable Microelectronic Materials Derived From Lignocellulosic Biomass, Harrison Thomas Hawkins May 2019

Fabrication Of Enhanced Carbon Based Biocompatible And Biodegradable Microelectronic Materials Derived From Lignocellulosic Biomass, Harrison Thomas Hawkins

Theses and Dissertations

The development of materials capable of harmlessly being broken down and removed from the body is a crucial step towards the development of short-term application electronic biomedical implants. Once developed, these implants, known as bioresorbable electronics, will open a wide array of temporary applications in the field of biomedical implantable devices. Necessary to the operation of bioresorbable electronics within the body is a power source that is similarly biocompatible and biodegradable. To this end, enhanced carbon-based materials and a bio-ionic liquid were developed for the fabrication of a preliminary implantable and bioresorbable battery and tested for functional properties. Electrodes were ...


Bio-Based Thiol-Ene Polymer Electrolytes, Elyse Antonia Baroncini Mar 2019

Bio-Based Thiol-Ene Polymer Electrolytes, Elyse Antonia Baroncini

Theses and Dissertations

Industrial and consumer demand for smaller and safer technologies motivates a global research effort to improve electrolytic polymer separators in lithium-ion batteries (LIBs). To incorporate the aromatic structural advantages of lignin, an abundant and renewable resource, into polymer electrolytes, molecules that can be derived from lignin are functionalized and UV-polymerized with multifunctional thiol monomers. Monomer aromaticity, thiol molecular weight, and total functionality are varied, allowing for analysis of the relationships between polymer structure and electrochemical properties.

The synthesized polymers display conductivities on the order of 10^-5 S/cm for gel polymer electrolytes and 10^-4 S/cm for solid ...


A Study Of Catalytic Microcombustion For A Portable Power Supply Device, Bhanuprakash Reddy Guggilla Jan 2019

A Study Of Catalytic Microcombustion For A Portable Power Supply Device, Bhanuprakash Reddy Guggilla

Theses and Dissertations

The essential need for portable and dense power sources has been greatly increased with the prevalence of portable electronic devices in the past decade. Catalytic combustion of hydrocarbon and oxygenated fuels has the potential to provide an alternative power source for portable electronic devices by replacing relatively today's heavy battery technology. A successful self-ignition and sustainable catalyst combustion for a variety of fuels using Platinum (Pt)-impregnated substrate was demonstrated in our previous work.

Present work explores the performance of a microcombustion thermoelectric coupled (MTC) device with improved reactor configuration design. Chemically synthesized platinum nanoparticles with particle diameters of ...