Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Using Frequency Based Substructuring To Optimize Multi-Axis Resonant Plate Shock Tests, Erica M. Jacobson Jan 2019

Using Frequency Based Substructuring To Optimize Multi-Axis Resonant Plate Shock Tests, Erica M. Jacobson

Dissertations, Master's Theses and Master's Reports

Resonant plate pyroshock tests only offer to test one component axis at a time, while the qualification pyroshock tests often have three single-axis specifications to meet. There is an interest in creating a multi-axis test environment from the single-axis resonant plate parts to save testing time, create a more realistic test environment, and monitor the possibility of an overtest. To investigate this, LaGrange-multiplier frequency based substructuring was implemented to virtually arrange the single-axis resonant plate subsystems into different assembly configurations and mathematically calculate the new assembly dynamics. A shock response spectrum was calculated from the new assembly dynamics through an …


Online Learning Of The Spatial-Temporal Channel Variation In Underwater Acoustic Communication Networks, Wensheng Sun Jan 2019

Online Learning Of The Spatial-Temporal Channel Variation In Underwater Acoustic Communication Networks, Wensheng Sun

Dissertations, Master's Theses and Master's Reports

Influenced by environmental conditions, underwater acoustic (UWA) communication channels exhibit spatial and temporal variations, posing significant challenges for UWA networking and applications. This dissertation develops statistical signal processing approaches to model and predict variations of the channel and relevant environmental factors. Firstly, extensive field experiments are conducted in the Great Lakes region. Three types of the freshwater river/lake acoustic channels are characterized in the aspects of statistical channel variations and sound propagation loss, including stationary, mobile and under-ice acoustic channels. Statistical data analysis shows that relative to oceanic channels, freshwater river/lake channels have larger temporal coherence, higher correlation among densely …


Automotive Driveline Backlash State And Size Estimator Design For Anti-Jerk Control, Kaushal Kumar Darokar Jan 2019

Automotive Driveline Backlash State And Size Estimator Design For Anti-Jerk Control, Kaushal Kumar Darokar

Dissertations, Master's Theses and Master's Reports

Vehicle drivability is an important factor which more and more customers have started assessing before buying a vehicle. Customers carry out this assessment based on both vehicle reviews/ratings and based on the test drives. One of common maneuver which a customers perform during the test drive is sudden accelerator pedal tip-in or tip-out to accelerate or coast the vehicle. Clunk and shuffle are the phenomena that usually occur during this scenario causing driver discomfort. The clunk and shuffle are caused by the backlash and compliance physical properties of the driveline. Consequently, control strategy needs to be developed which can provide …


A Hybrid-Powered Wireless System For Multiple Biopotential Monitoring, Shawn Li Jan 2019

A Hybrid-Powered Wireless System For Multiple Biopotential Monitoring, Shawn Li

Dissertations, Master's Theses and Master's Reports

Chronic diseases are the top cause of human death in the United States and worldwide. A huge amount of healthcare costs is spent on chronic diseases every year. The high medical cost on these chronic diseases facilitates the transformation from in-hospital to out-of-hospital healthcare. The out-of-hospital scenarios require comfortability and mobility along with quality healthcare. Wearable electronics for well-being management provide good solutions for out-of-hospital healthcare. Long-term health monitoring is a practical and effective way in healthcare to prevent and diagnose chronic diseases. Wearable devices for long-term biopotential monitoring are impressive trends for out-of-hospital health monitoring. The biopotential signals in …


Closed Loop Energy Maximizing Control Of A Wave Energy Converter Using An Estimated Linear Model That Approximates The Nonlinear Froude-Krylov Force, Yaqzan Mohd Yaqzan Jan 2019

Closed Loop Energy Maximizing Control Of A Wave Energy Converter Using An Estimated Linear Model That Approximates The Nonlinear Froude-Krylov Force, Yaqzan Mohd Yaqzan

Dissertations, Master's Theses and Master's Reports

Wave energy converters (WECs) exploit ocean wave energy and convert it into useful forms such as electricity. But for WECs to be successful on a large scale, two primary conditions need to be satisfied. The energy generated must satisfy the network requirements, and second, energy flow from waves to the grid needs to be maximized. In this dissertation, we address the second problem. Most control techniques for WECs today use the Cummins' linear model to simulate WEC hydrodynamics. However, it has been shown that under the application of a control force, where WEC motions are amplified, the linear model diverges …


Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein Jan 2019

Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein

Dissertations, Master's Theses and Master's Reports

The US military is moving toward the electrification of many weapon systems and platforms. Advanced weapon systems such as high energy radar, electro-magnetic kinetic weapons and directed energy pose significant integration challenges due to their pulsed power electrical load profile. Additionally, the weapons platforms, including ships, aircraft, and vehicles can be studied as a mobile microgrids with multiple generation sources, loads, and energy storage. There is also a desire to extend the mission profile and capabilities of these systems. Common goals are to increase fuel efficiency, maintaining system stability, and reduce energy storage size as typically required to enable pulsed …


Experimental Characterization Of Hydraulic System Sound, Ben Kolb Jan 2019

Experimental Characterization Of Hydraulic System Sound, Ben Kolb

Dissertations, Master's Theses and Master's Reports

The purpose of this research was to establish test methods for characterizing the interaction between the hydraulic fluid and hydraulic hose at clipping points in mobile heavy equipment hydraulic systems. A simple hydraulic circuit test bench was developed and the laboratory axial piston pump was characterized using ISO 10767-1. A direct relationship between the fluidborne noise and structureborne noise present at each hose clip location was observed for a specific operating condition using operating deflection shapes and structureborne noise measurements. This result shows that optimal hose clip placement can be a viable solution to structureborne noise reduction. Additionally, a modal …


Acoustic Localization Techniques For Application In Near-Shore Arctic Environments, Miles B. Penhale Jan 2019

Acoustic Localization Techniques For Application In Near-Shore Arctic Environments, Miles B. Penhale

Dissertations, Master's Theses and Master's Reports

The Arctic environment has undergone significant change in recent years. Multi-year ice is no longer prevalent in the Arctic. Instead, Arctic ice melts during summer months and re-freezes each winter. First-year ice, in comparison to multi-year ice, is different in terms of its acoustic properties. Therefore, acoustic propagation models of the Arctic may no longer be valid. The open water in the Arctic for longer time periods during the year invites anthropogenic traffic such as civilian tourism, industrial shipping, natural resource exploration, and military exercises. It is important to understand sound propagation in the first-year ice environment, especially in near-shore …


Development Of A Fused Deposition 3d Printed Buoy And Method For Quantifying Wave Tank Reflections, Samantha G. Swartzmiller Jan 2019

Development Of A Fused Deposition 3d Printed Buoy And Method For Quantifying Wave Tank Reflections, Samantha G. Swartzmiller

Dissertations, Master's Theses and Master's Reports

Testing model scale prototypes is integral to the development of wave energy converter (WEC) technology. Model scale WECs are tested in wave tanks where they are subjected to repeatable wave fields. Their presence in water creates radiated waves that eventually reflect off tank walls disrupting the intended wave field. Fabrication of model scale WECs is another developing aspect of tank testing. Often model WECs are built of foam. Additive manufacturing is a promising alternative although the most common method, fused deposition modeling (FDM) 3D printing, does not typically produce waterproof parts. The goals of this work were 1) develop a …


Modeling Chevy Volt Gen Ii Supervisory Controller In Charge Sustaining Operation, Saurabh Bhasme Jan 2019

Modeling Chevy Volt Gen Ii Supervisory Controller In Charge Sustaining Operation, Saurabh Bhasme

Dissertations, Master's Theses and Master's Reports

This report is focused on the development of Chevy Volt Gen II powertrain supervisory controller modeling for charge sustaining operation of the vehicle. The modeling process incorporated vehicle parameters and maps provided. The overall powertrain model along with the supervisory controller is developed in MAT- LAB/SIMULINK programming platform. The powertrain model includes all components which are the IC engine, two electric motors & associated TPIM, Battery, transmission auxiliary pump and spin-losses. The supervisory controller includes the vehicle drive mode selection model, the torque blending logic for charge sustaining along with friction brake modeling. The model has been developed to perform …


Improved Low-Frequency Impact Insulation Class Measurements Based On Comparison Techniques, Sunit Girdhar Jan 2019

Improved Low-Frequency Impact Insulation Class Measurements Based On Comparison Techniques, Sunit Girdhar

Dissertations, Master's Theses and Master's Reports

In today’s world, noise pollution is growing as a major concern and it is becoming more and more difficult to find quiet places. But when the problem escalates to the extent that people are annoyed with loud noises even in their apartments, it becomes an alarming issue for engineers. Around the world, cities have defined some basic performance requirements for buildings, and isolation of residents from noise is one of the cardinal performance requirements. In the United States, building codes use the Impact Insulation Class (IIC) rating to characterize the performance of floor/ceiling assemblies. This method uses the response measured …


Comparative Study And Design Of Economical Sound Intensity Probe, Karan Gundre Jan 2019

Comparative Study And Design Of Economical Sound Intensity Probe, Karan Gundre

Dissertations, Master's Theses and Master's Reports

The theory of sound intensity measurement using the two-microphone method was first developed in the late 1970s. Even though the measurements were limited by the technology of the time, the theory was straight-forward and considerable attention was given to improving precision during testing or post-processing. With the development of modern equipment, however, the focus shifted to the apparatus. The commercial intensity probes available today have microphones that are already phase-matched. This eliminates the need for correction during or post-testing as a majority of the errors are minimized before any data is even collected. Although such intensity probes facilitate taking precise …


Mpc-Based Autonomous Driving Control With Localized Path Planning For Obstacle Avoidance And Navigating Signalized Intersections, Sai Rajeev Devaragudi Jan 2019

Mpc-Based Autonomous Driving Control With Localized Path Planning For Obstacle Avoidance And Navigating Signalized Intersections, Sai Rajeev Devaragudi

Dissertations, Master's Theses and Master's Reports

Connected and autonomous vehicles are becoming the major focus of research for the industry and academia in the automotive field. Many companies and research groups have demonstrated the advantages and the requirement of such technology to improve the energy efficiency of vehicles, decrease the number of crash and road accidents, and control emissions.

This research delves into improving the autonomy of self-driving vehicles by implementing localized path planning algorithms to introduce motion control for obstacle avoidance during uncertainties. Lateral path planning is implemented using the A* algorithm combined with piecewise Bezier curve generation which provides an optimum trajectory reference to …