Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Direct Numerical Simulation Of Roughness Induced Hypersonic Boundary Layer Transition On A 7° Half-Angle Cone, Tara E. Crouch Mar 2019

Direct Numerical Simulation Of Roughness Induced Hypersonic Boundary Layer Transition On A 7° Half-Angle Cone, Tara E. Crouch

Theses and Dissertations

Direct numerical simulation (DNS) computational fluid dynamic (CFD) calculations were performed on a 30° slice of 7° half-angle cones with increasing nose radii bluntness at Mach 10 while simulating a distributed roughness pattern on the cone surface. These DNS computations were designed to determine if the non-modal transition behavior observed in testing performed at the Arnold Engineering Development Center (AEDC) Hypervelocity Wind Tunnel 9 was induced via distributed surface roughness. When boundary layer transition is dominated by second mode instabilities, an increase in nose radius delays the transition location downstream. However, blunt nose experiments indicated that as the nose radius …


Schlieren Imaging And Flow Analysis On A Cone/Flare Model In The Afrl Mach 6 Ludwieg Tube Facility, David A. Labuda Mar 2019

Schlieren Imaging And Flow Analysis On A Cone/Flare Model In The Afrl Mach 6 Ludwieg Tube Facility, David A. Labuda

Theses and Dissertations

High-speed Schlieren photography was utilized to visualize flow in the Air Force Research Laboratory Mach 6 Ludwieg tube facility. A 7° half-angle cone/flare model with variable nosetip radius and flare angle options was used in the study. Testing was performed at two driver tube pressures, generating freestream Reynolds numbers of 10.0x106 and 19.8x106 per meter. The variable-angle flare portion of the model provided a method for adjusting the intensity of the adverse pressure gradient at the cone/flare junction. As expected from existing literature, boundary layer separation along the cone frustum occurred further upstream as the magnitude of the …


Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung Mar 2019

Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung

Theses and Dissertations

A recent research effort, sponsored by the Air Force Office of Scientific Research, numerically investigated the unsteady aerodynamic flow field around an oscillating, straked, delta wing. The study was centered on determining the importance of the unsteady aerodynamic forces acting as a driver for a nonlinear motion known as limit cycle oscillations. The current effort focused on creating a computational model to compare to the results of previous tests and modeling efforts and discover new information regarding the onset of LCO. The computational model was constructed using the Cartesian overset capabilities of the CREATE-AV™ fixed wing fluid dynamics solver Kestrel. …