Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Theses/Dissertations

Robotics

Institution
Keyword
Publication

Articles 1 - 30 of 45

Full-Text Articles in Engineering

A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou Dec 2019

A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou

Electronic Thesis and Dissertation Repository

Tremor, one of the most disabling symptoms of Parkinson's disease (PD), significantly affects the quality of life of the individuals who suffer from it. These people live with difficulties with fine motor tasks, such as eating and writing, and suffer from social embarrassment. Traditional medicines are often ineffective, and surgery is highly invasive and risky. The emergence of wearable technology facilitates an externally worn mechatronic tremor suppression device as a potential alternative approach for tremor management. However, no device has been developed for the suppression of finger tremor that has been validated on a human.

It has been reported ...


Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley Dec 2019

Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley

Master's Theses

This thesis investigates the involuntary signal-based grounding of civilian unmanned aerial systems (UAS) in unauthorized air spaces. The technique proposed here will forcibly land unauthorized UAS in a given area in such a way that the UAS will not be harmed, and the pilot cannot stop the landing. The technique will not involuntarily ground authorized drones which will be determined prior to the landing. Unauthorized airspaces include military bases, university campuses, areas affected by a natural disaster, and stadiums for public events. This thesis proposes an early prototype of a hardware-based signal based involuntary grounding technique to handle the problem ...


Reasoning From Point Clouds, Joey Wilson Dec 2019

Reasoning From Point Clouds, Joey Wilson

Computer Engineering

Over the past two years, 3D object detection has been a major area of focus across industry and academia. This is primarily due to the difficulty of learning data from point clouds. While camera images are fixed size and can therefore be easily trained on using convolution, point clouds are unstructured series of points in three dimensions. Therefore, there is no fixed number of features, or a structure to run convolution on. Instead, researchers have developed many ways of attempting to learn from this data, however there is no clear consensus on what is the best method, as each has ...


Audio Beat Detection With Application To Robot Drumming, Michael James Engstrom Oct 2019

Audio Beat Detection With Application To Robot Drumming, Michael James Engstrom

Dissertations and Theses

This Drumming Robot thesis demonstrates the design of a robot which can play drums in rhythm to an external audio source. The audio source can be either a pre-recorded .wav file or a live sample .wav file from a microphone. The dominant beats-per-minute (BPM) of the audio would be extracted and the robot would drum in time to the BPM. A Fourier Analysis-based BPM detection algorithm, developed by Eric Scheirer (Tempo and beat analysis of acoustical musical signals)i was adopted and implemented. In contrast to other popular algorithms, the main advantage of Scheirer's algorithm is it has no ...


Communication Capability For A Simulation-Based Test And Evaluation Framework For Autonomous Systems, Ntiana Sakioti Oct 2019

Communication Capability For A Simulation-Based Test And Evaluation Framework For Autonomous Systems, Ntiana Sakioti

Computational Modeling and Simulation Engineering Theses & Dissertations

The design and testing process for collaborative autonomous systems can be extremely complex and time-consuming, so it is advantageous to begin testing early in the design. A Test & Evaluation (T&E) Framework was previously developed to enable the testing of autonomous software at various levels of mixed reality. The Framework assumes a modular approach to autonomous software development, which introduces the possibility that components are not in the same stage of development. The T&E Framework allows testing to begin early in a simulated environment, with the autonomous software methodically migrating from virtual to augmented to physical environments as component ...


Optimal Sampling Paths For Autonomous Vehicles In Uncertain Ocean Flows, Andrew J. De Stefan Aug 2019

Optimal Sampling Paths For Autonomous Vehicles In Uncertain Ocean Flows, Andrew J. De Stefan

Dissertations

Despite an extensive history of oceanic observation, researchers have only begun to build a complete picture of oceanic currents. Sparsity of instrumentation has created the need to maximize the information extracted from every source of data in building this picture. Within the last few decades, autonomous vehicles, or AVs, have been employed as tools to aid in this research initiative. Unmanned and self-propelled, AVs are capable of spending weeks, if not months, exploring and monitoring the oceans. However, the quality of data acquired by these vehicles is highly dependent on the paths along which they collect their observational data. The ...


An Efficient Multiple-Place Foraging Algorithm For Scalable Robot Swarms, Qi Lu Jul 2019

An Efficient Multiple-Place Foraging Algorithm For Scalable Robot Swarms, Qi Lu

Computer Science ETDs

Searching and collecting multiple resources from large unmapped environments is an important challenge. It is particularly difficult given limited time, a large search area and incomplete data about the environment. This search task is an abstraction of many real-world applications such as search and rescue, hazardous material clean-up, and space exploration. The collective foraging behavior of robot swarms is an effective approach for this task. In our work, individual robots have limited sensing and communication range (like ants), but they are organized and work together to complete foraging tasks collectively. An efficient foraging algorithm coordinates robots to search and collect ...


Design Of A Canine Inspired Quadruped Robot As A Platform For Synthetic Neural Network Control, Cody Warren Scharzenberger Jul 2019

Design Of A Canine Inspired Quadruped Robot As A Platform For Synthetic Neural Network Control, Cody Warren Scharzenberger

Dissertations and Theses

Legged locomotion is a feat ubiquitous throughout the animal kingdom, but modern robots still fall far short of similar achievements. This paper presents the design of a canine-inspired quadruped robot named DoggyDeux as a platform for synthetic neural network (SNN) research that may be one avenue for robots to attain animal-like agility and adaptability. DoggyDeux features a fully 3D printed frame, 24 braided pneumatic actuators (BPAs) that drive four 3-DOF limbs in antagonistic extensor-flexor pairs, and an electrical system that allows it to respond to commands from a SNN comprised of central pattern generators (CPGs). Compared to the previous version ...


Nonlinear Attitude And Pose Filters With Superior Convergence Properties, Hashim Abdellah Hashim Mohamed Jul 2019

Nonlinear Attitude And Pose Filters With Superior Convergence Properties, Hashim Abdellah Hashim Mohamed

Electronic Thesis and Dissertation Repository

In this thesis, several deterministic and stochastic attitude filtering solutions on the special orthogonal group SO(3) are proposed. Firstly, the attitude estimation problem is approached on the basis of nonlinear deterministic filters on SO(3) with guaranteed transient and steady-state measures. The second solution to the attitude estimation problem considers nonlinear stochastic filters on SO(3) with superior convergence properties with two filters being developed in the sense of Ito, and one in the sense of Stratonovich.

This thesis also presents several deterministic and stochastic pose filtering solutions developed on the special Euclidean group SE(3). The first solution ...


A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim Jun 2019

A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim

LSU Master's Theses

A multi-agent system can be defined as a coordinated network of mobile, physical agents that execute complex tasks beyond their individual capabilities. Observations of biological multi-agent systems in nature reveal that these ``super-organisms” accomplish large scale tasks by leveraging the inherent advantages of a coordinated group. With this in mind, such systems have the potential to positively impact a wide variety of engineering applications (e.g. surveillance, self-driving cars, and mobile sensor networks). The current state of research in the area of multi-agent systems is quickly evolving from the theoretical development of coordination control algorithms and their computer simulations to ...


The Soul Annoyed Robot: A Senior Project Report, Dayton Andrew Muxlow, Christian Johansen Jun 2019

The Soul Annoyed Robot: A Senior Project Report, Dayton Andrew Muxlow, Christian Johansen

Computer Engineering

Our goal for this senior project was to create a competitive robot designed to com- pete in Roborodentia 2019. Our project started during the Winter 2019 quarter, and ended with the competition on May 18, 2019. During that time, we developed an accurate solenoid shooting mechanism, an elevated conveyor belt to carry poker chips, and a servo arm to scoop in stacks of poker chips. These hardware compo- nents were attached to a circular differential-drive wooden base designed to be easy to control. We also planned out our match strategy and implemented this strategy with software written in C/Wiring ...


Planr.: Planar Learning Autonomous Navigation Robot, Gabrielle S. Santamorena, Daniel Kasman, Jesus Mercado, Ben Klave, Andrew Weisman, Anthony Fortner Jun 2019

Planr.: Planar Learning Autonomous Navigation Robot, Gabrielle S. Santamorena, Daniel Kasman, Jesus Mercado, Ben Klave, Andrew Weisman, Anthony Fortner

Computer Engineering

PLANR is a self-contained robot capable of mapping a space and generating 2D floor plans of a building while identifying objects of interest. It runs Robot Operating System (ROS) and houses four main hardware components. An Arduino Mega board handles the navigation, while an NVIDIA Jetson TX2, holds most of the processing power and runs ROS. An Orbbec Astra Pro stereoscopic camera is used for recognition of doors, windows and outlets and the RPLiDAR A3 laser scanner is able to give depth for wall detection and dimension measurements. The robot is intended to operate autonomously and without constant human monitoring ...


Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji Jun 2019

Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji

Honors Theses

Soft robotics is an emerging field of research due to its potential to explore and operate in unstructured, rugged, and dynamic environments. However, the properties that make soft robots compelling also make them difficult to robustly control. Here at Union, we developed the world’s first wireless soft tensegrity robot. The goal of my thesis is to explore effective and efficient methods to explore the diverse behavior our tensegrity robot. We will achieve that by applying state-of-art machine learning technique and a novelty search algorithm.


Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur Jun 2019

Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur

Computer Engineering

Technology and the way that humans interact is becoming more vital and omnipresent with every passing day. However, human interface device designers suffer from the increasingly popular “designed for me or people like me” syndrome. This design philosophy inherently limits accessibility and usability of technology to those like the designer. This places severe limits of usability to those who are not fully able as well as leaves non-traditional human interface devices unexplored. This project set out to explore a previously uncharted human interface device, on an electric skateboard, and compare it send user experience with industry leading human interface devices.


Labeling Paths With Convolutional Neural Networks, Sean Wallace, Kyle Wuerch Jun 2019

Labeling Paths With Convolutional Neural Networks, Sean Wallace, Kyle Wuerch

Computer Engineering

With the increasing development of autonomous vehicles, being able to detect driveable paths in arbitrary environments has become a prevalent problem in multiple industries. This project explores a technique which utilizes a discretized output map that is used to color an image based on the confidence that each block is a driveable path. This was done using a generalized convolutional neural network that was trained on a set of 3000 images taken from the perspective of a robot along with matching masks marking which portion of the image was a driveable path. The techniques used allowed for a labeling accuracy ...


Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman Jun 2019

Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman

Master's Theses

The application of robotics in cluttered and dynamic environments provides a wealth of challenges. This thesis proposes a deep reinforcement learning based system that determines collision free navigation robot velocities directly from a sequence of depth images and a desired direction of travel. The system is designed such that a real robot could be placed in an unmapped, cluttered environment and be able to navigate in a desired direction with no prior knowledge. Deep Q-learning, coupled with the innovations of double Q-learning and dueling Q-networks, is applied. Two modifications of this architecture are presented to incorporate direction heading information that ...


Surveying Underwater Shipwrecks With Probabilistic Roadmaps, Amy Jeannette Lewis Jun 2019

Surveying Underwater Shipwrecks With Probabilistic Roadmaps, Amy Jeannette Lewis

Master's Theses

Almost two thirds of the Earth's surface is covered in ocean, and yet, only about 5% of it is mapped. There are an unknown amount of sunken ships, planes, and other artifacts hidden below the sea. Extensive search via boat and a sonar tow fish following a standard lawnmower pattern is used to identify sites of interest. Then, if a site has been determined to potentially be historically significant, the most common next step is a survey by either a human dive team or remotely operated vehicle. These are time consuming, error prone, and potentially dangerous options, but autonomous ...


Modeling Of Complex Parts For Industrial Waterjet Cleaning, Braden James May 2019

Modeling Of Complex Parts For Industrial Waterjet Cleaning, Braden James

Theses and Dissertations

Industrial high-pressure waterjet cleaning is common to many industries. The modeling in this paper functions inside a collaborative robotic framework for high mix, low volume processes where human robot collaboration is beneficial. Automation of pressure washing is desirable for economic and ergonomic reasons. An automated cleaning system needs path simulation and analysis to give the operator insight into the predicted cleaning performance of the system. In this paper, ablation, the removal of a substrate coating by waterjet, is modeled for robotic cleaning operations. The model is designed to work with complex parts often found in spray cleaning operations, namely parts ...


Towards A Prototype Platform For Ros Integrations On A Ground Robot, Taylor Joseph Linville Whitaker May 2019

Towards A Prototype Platform For Ros Integrations On A Ground Robot, Taylor Joseph Linville Whitaker

Theses and Dissertations

The intent of this work was to develop, evaluate, and demonstrate a prototype robot platform on which ROS integrations could be explored. With observations of features and requirements of existing industrial and service mobile ground robots, a platform was designed and outfitted with appropriate components to enable the most common operational-critical functionalities and account for unforeseen components and features. The resulting Arlo Demonstration Robot accommodates basic mapping, localization, and navigation in both two and three-dimensional space as well as additional safety and teleoperation features. The control system is centered around the Zybo Z7 FPGA SoC hosting a custom hardware design ...


Effects Of Control Device And Task Complexity On Performance And Task Shedding During A Robotic Arm Task, Shelby K. Long Apr 2019

Effects Of Control Device And Task Complexity On Performance And Task Shedding During A Robotic Arm Task, Shelby K. Long

Psychology Theses & Dissertations

The use of robotic arms across domains is increasing, but the relationship between control features and performance is not fully understood. The goal of this research was to investigate the difference in task performance when using two different control devices at high and low task complexities when participants can shed tasks to automation. In this experiment, 40 undergraduates (24 females) used two control devices, a Leap Motion controller and an Xbox controller, to teleoperate a robotic arm in a high or low complexity peg placement task. Simultaneously, participants were tasked with scanning images for tanks. During the experiment, participants had ...


A Framework For Test & Evaluation Of Autonomous Systems Along The Virtuality-Reality Spectrum, Nathan D. Gonda Apr 2019

A Framework For Test & Evaluation Of Autonomous Systems Along The Virtuality-Reality Spectrum, Nathan D. Gonda

Computational Modeling and Simulation Engineering Theses & Dissertations

Test & Evaluation of autonomous vehicles presents a challenge as the vehicles may have emergent behavior and it is frequently difficult to ascertain the reason for software decisions. Current Test & Evaluation approaches for autonomous systems place the vehicles in various operating scenarios to observe their behavior. However, this introduces dependencies between design and development lifecycle of the autonomous software and physical vehicle hardware. Simulation-based testing can alleviate the necessity to have physical hardware; however, it can be costly when transitioning the autonomous software to and from a simulation testing environment. The objective of this thesis is to develop a reusable framework for testing autonomous software such that testing can be conducted at various levels of mixed reality provided the framework components are sufficient to support data required by the autonomous software. The paper describes the design of the software framework and explores its application through use cases.


Robotic Motion Generation By Using Spatial-Temporal Patterns From Human Demonstrations, Yongqiang Huang Mar 2019

Robotic Motion Generation By Using Spatial-Temporal Patterns From Human Demonstrations, Yongqiang Huang

Graduate Theses and Dissertations

Robots excel in manufacturing facilities because the tasks are repetitive and do not change. However, when the tasks change, which happens in almost all tasks that humans perform daily, such as cutting, pouring, and grasping, etc., robots perform much worse. We aim at teaching robots to perform tasks that are subject to change using demonstrations collected from humans, a problem referred to as learning from demonstration (LfD).

LfD consists of two parts: the data of human demonstrations, and the algorithm that extracts knowledge from the data to perform the same motions. Similarly, this thesis is divided into two parts. The ...


Force Feedback And Intelligent Workspace Selection For Legged Locomotion Over Uneven Terrain, John Rippetoe Mar 2019

Force Feedback And Intelligent Workspace Selection For Legged Locomotion Over Uneven Terrain, John Rippetoe

Graduate Theses and Dissertations

Legged robots present an incredible opportunity for humanity to conduct dangerous operations such as search and rescue, disaster recovery, and planetary exploration without ever placing themselves in harms way. The ability of a leg to more freely dictate its shape, orientation, and length gives it tremendous mobility and adaptability demanded of a system intended for operation outside of a controlled environment. However, one only need look at the average cat, dog, or friendly neighborhood squirrel to understand the immense gap that exists between what is possible of legged systems and their current set of capabilities.

Areas of study relevant to ...


American Sign Language Recognition Using Machine Learning And Computer Vision, Kshitij Bantupalli, Ying Xie Feb 2019

American Sign Language Recognition Using Machine Learning And Computer Vision, Kshitij Bantupalli, Ying Xie

Master of Science in Computer Science Theses

Speech impairment is a disability which affects an individual’s ability to communicate using speech and hearing. People who are affected by this use other media of communication such as sign language. Although sign language is ubiquitous in recent times, there remains a challenge for non-sign language speakers to communicate with sign language speakers or signers. With recent advances in deep learning and computer vision there has been promising progress in the fields of motion and gesture recognition using deep learning and computer vision-based techniques. The focus of this work is to create a vision-based application which offers sign language ...


Learning Probabilistic Generative Models For Fast Sampling-Based Planning, Jinwook Huh Jan 2019

Learning Probabilistic Generative Models For Fast Sampling-Based Planning, Jinwook Huh

Publicly Accessible Penn Dissertations

Due to their simplicity and efficiency in high dimensional space, sampling-based motion planners have been gaining interest for robotic manipulation in recent years. We present several new learning approaches using probabilistic generative models for fast sampling-based planning. First, we propose fast collision detection in high dimensional configuration spaces based on Gaussian Mixture Models (GMMs) for Rapidly-exploring Random Trees (RRT). In addition, we introduce a new probabilistically safe local steering primitive based on the probabilistic model. Our local steering procedure is based on a new notion of a convex probabilistically safety corridor that is constructed around a configuration using tangent hyperplanes ...


Tactile Perception And Visuotactile Integration For Robotic Exploration, Mabel Zhang Jan 2019

Tactile Perception And Visuotactile Integration For Robotic Exploration, Mabel Zhang

Publicly Accessible Penn Dissertations

As the close perceptual sibling of vision, the sense of touch has historically received less than deserved attention in both human psychology and robotics. In robotics, this may be attributed to at least two reasons. First, it suffers from the vicious cycle of immature sensor technology, which causes industry demand to be low, and then there is even less incentive to make existing sensors in research labs easy to manufacture and marketable. Second, the situation stems from a fear of making contact with the environment, avoided in every way so that visually perceived states do not change before a carefully ...


Sensor-Based Topological Coverage And Mapping Algorithms For Resource-Constrained Robot Swarms, Rattanachai Ramaithitima Jan 2019

Sensor-Based Topological Coverage And Mapping Algorithms For Resource-Constrained Robot Swarms, Rattanachai Ramaithitima

Publicly Accessible Penn Dissertations

Coverage is widely known in the field of sensor networks as the task of deploying sensors to completely cover an environment with the union of the sensor footprints. Related to coverage is the task of exploration that includes guiding mobile robots, equipped with sensors, to map an unknown environment (mapping) or clear a known environment (searching and pursuit- evasion problem) with their sensors. This is an essential task for robot swarms in many robotic applications including environmental monitoring, sensor deployment, mine clearing, search-and-rescue, and intrusion detection. Utilizing a large team of robots not only improves the completion time of such ...


Event-Based Algorithms For Geometric Computer Vision, Alex Zihao Zhu Jan 2019

Event-Based Algorithms For Geometric Computer Vision, Alex Zihao Zhu

Publicly Accessible Penn Dissertations

Event cameras are novel bio-inspired sensors which mimic the function of the human retina. Rather than directly capturing intensities to form synchronous images as in traditional cameras, event cameras asynchronously detect changes in log image intensity. When such a change is detected at a given pixel, the change is immediately sent to the host computer, where each event consists of the x,y pixel position of the change, a timestamp, accurate to tens of microseconds, and a polarity, indicating whether the pixel got brighter or darker. These cameras provide a number of useful benefits over traditional cameras, including the ability ...


Haptic Force Generation For 6 Dof Dynamic Position Constraints, Fan Zhang Jan 2019

Haptic Force Generation For 6 Dof Dynamic Position Constraints, Fan Zhang

Graduate Theses and Dissertations

This paper implemented the impedance fields for performance enhancement on Virtuose 6D. The conversion from cartesian space to joint space is calculated and implemented to control the robot. The characteristics and the properties of the impedance field equation are analyzed. Simulations of the attractive field and repulsive field are made, that show the regions of influence of the static coupled system. Experimental results from the tests on the Haption Virtuose 6D robot are shown which validate the impedance control algorithm for both repulsive and attractive field.

Two approaches to the attractive, guiding fields are developed, and the human-robot system are ...


3d Formation Control In Multi-Robot Teams Using Artificial Potential Fields, Sanjana Reddy Mohan Jan 2019

3d Formation Control In Multi-Robot Teams Using Artificial Potential Fields, Sanjana Reddy Mohan

Electronic Theses and Dissertations

Multi-robot teams find applications in emergency response, search and rescue operations, convoy support and many more. Teams of autonomous aerial vehicles can also be used to protect a cargo of airplanes by surrounding them in some geometric shape. This research develops a control algorithm to attract UAVs to one or a set of bounded geometric shapes while avoiding collisions, re-configuring in the event of departure or addition of UAVs and maneuvering in mission space while retaining the configuration. Using potential field theory, weighted vector fields are described to attract UAVs to a desired formation. In order to achieve this, three ...