Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Assessment Of The Biocompatibilty, Stability, And Suitability Of Natural And Synthetic Polymers And Drugs In The Fda Approval Process, Phuong Anh Hoang Nguyen Aug 2019

Assessment Of The Biocompatibilty, Stability, And Suitability Of Natural And Synthetic Polymers And Drugs In The Fda Approval Process, Phuong Anh Hoang Nguyen

Biomedical Engineering ETDs

Regulation of the development, production, marketing, and sales of medical pharmaceuticals and devices in the United States fall under the regulatory functions of the Food and Drug Administration (FDA). The current FDA approval process takes an average of 10 years from start to completion, and costs over $100 million. As a result, companies use many different methods to find additional use of their drugs through marketing directly to the physician, or recycling of previously approved drug moieties. In this work, an evaluation of the in vitro and ex vivo biocompatibility of polymers and drugs in different phases of FDA approval …


Tauopathies, Novel Optogenetic Tools, And The Future Of Artificial Intellience In Medicine., Jessica L. Binder Jul 2019

Tauopathies, Novel Optogenetic Tools, And The Future Of Artificial Intellience In Medicine., Jessica L. Binder

Biomedical Sciences ETDs

To this day, there is no cure for Alzheimer’s disease (AD) and related dementias (ADRD). With the daunting rise at an exponential rate of ADRD burden and related deaths, the necessity to find a new line of attack is vital. Pathological accumulation of microtubule associated protein tau in neurons is a major neuropathological hallmark of Alzheimer’s disease (AD) and related tauopathies. Attempts have been made to promote clearance of pathological tau (p-Tau) from neurons via autophagy. Transcription factor EB (TFEB) has shown to clear p-Tau from neurons via autophagy. However, sustained TFEB activation and autophagy can create burden on cellular …


A Microfluidics-Based Cross-Flow Filtration Platform For Rapid Processing Of Amphiphilic Biomarkers From Blood, Kiersten D. Lenz Jul 2019

A Microfluidics-Based Cross-Flow Filtration Platform For Rapid Processing Of Amphiphilic Biomarkers From Blood, Kiersten D. Lenz

Biomedical Engineering ETDs

Early and accurate detection of bacterial infections can help save lives, prevent the spread of disease, and decrease the overuse of antibiotics. Our team at the Los Alamos National Laboratory has developed novel assays to detect bacterial biomarkers from patient blood at the point-of-care in order to facilitate a universal diagnostic platform. However, these biomarkers are amphiphilic in nature, and this biochemical property causes them to be sequestered by high-density and low-density lipoproteins (HDL and LDL) in the host’s blood. Extraction of the bacterial biomarkers from the lipoprotein complexes is thereby required for the development and deployment of a diagnostic …


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The …


Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo Apr 2019

Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo

Biomedical Engineering ETDs

Understanding the structure-function relationship of membrane receptors is essential to comprehend the crosstalk between key signaling pathways. Aberrant trans-activation between receptors can lead to tumorigenesis. Two of these receptors known to be involved in cancer development are receptor tyrosine kinases (RTKs), RON (Recepteur d'Origine Nantais) and EGFR (Epidermal Growth Factor Receptor). There has been evidence of heterodimerization and crosstalk between these two receptors based on co-immunoprecipitation, however the structural requirements behind these interactions remain unknown. Structural studies could provide insights into these RTKs’ modes of dimerization and structure-function relationship. However, structural studies of full-length membrane proteins are often difficult due …