Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Triple-Junction Solar Cells : In Parallel., Levi C Mays Aug 2019

Triple-Junction Solar Cells : In Parallel., Levi C Mays

Electronic Theses and Dissertations

This paper looks into the current inefficiency of solar cells and attempts a few alternative solar cell structures in order to provide a more effective source of renewable energy. Currently, multi-junction solar cells are being developed to capture the sun’s light more efficiently. One of the ideas in this paper is to add a window to see if the addition of such a layer into a junction will increase the voltage while maintaining nearly the same current output. Central to this paper is the rearranging of the conducting layers of the multi-junction cell so that the junctions can be connected …


(111)-Oriented Gallium Arsenide Tensile-Strained Quantum Dots Tailored For Entangled Photon Emission, Christopher Schuck May 2019

(111)-Oriented Gallium Arsenide Tensile-Strained Quantum Dots Tailored For Entangled Photon Emission, Christopher Schuck

Boise State University Theses and Dissertations

The use of molecular beam epitaxy (MBE) to create quantum dots (QDs) embedded in solid-state semiconductor media has been at the forefront of novel and record-breaking optoelectronic device development for many years. However, the wide range of semiconductor fabrication capabilities and the non-equilibrium growth parameters inherent to MBE mean that there are still many QD research frontiers that are yet to be explored.

This work focuses on a recently discovered method that permits, for the first time, the growth of QDs under tensile strain on non-(100) surfaces. My research explores the first (and currently only) optically active materials system for …


Characterization Of Metal Contacts On Hydrothermally Synthesized Uranium Dioxide For Novel Semiconductor Applications, Tory E. Robinson Mar 2019

Characterization Of Metal Contacts On Hydrothermally Synthesized Uranium Dioxide For Novel Semiconductor Applications, Tory E. Robinson

Theses and Dissertations

This research is focused on determining which metals or combinations of metals form effective electrical contacts on hydrothermally synthesized UO2 substrates to allow for additional work in characterization of the material as well as the feasibility of its use in semiconductor devices such as solid-state neutron detectors. A methodology was established for selection of candidate metals. Target mixtures composed of Au, Ag, Pt, and Mg were chosen along with several single-metals. Thin metal films were deposited onto tungsten probe tips and hydrothermally synthesized UO2 samples to allow for analysis of mechanical and deposited contact to the substrates through I-V measurements.