Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Theses/Dissertations

Heat Transfer, Combustion

Institution
Keyword
Publication
File Type

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Thermoplastic Composite Heat Recovery Ventilator, Keegan Guinn Jun 2019

Thermoplastic Composite Heat Recovery Ventilator, Keegan Guinn

Honors Theses

Heat recovery ventilation continues to increase in importance as building codes mandate reduced air infiltration and increased energy efficiency. Heat recovery ventilators are able to reduce building heating and cooling loads by transferring heat between the exiting air and incoming ventilation air. In the role of heat recovery ventilation, additively manufactured polymer composite heat recovery ventilators offer significant advantages over traditionally manufactured metallic alloy heat recovery ventilators. Through the implementation of additive manufacturing, the internal geometry of the heat recovery ventilator can be optimized to decrease the head loss across the system and features to improve heat transfer such as ...


Atmospheric Water Harvesting: An Experimental Study Of Viability And The Influence Of Surface Geometry, Orientation, And Drainage, Carson T. Hand Jun 2019

Atmospheric Water Harvesting: An Experimental Study Of Viability And The Influence Of Surface Geometry, Orientation, And Drainage, Carson T. Hand

Master's Theses and Project Reports

Fresh water collection techniques have gained significant attention due to global dwindling of fresh water resources and recent scares such as the 2011-2017 California drought. This project explores the economic viability of actively harvesting water from fog, and techniques to maximize water collection. Vapor compression and thermoelectric cooling based dehumidifier prototypes are tested in a series of experiments to assess water collection capability in foggy environments, and what parameters can increase that capability. This testing shows an approximate maximum collection rate of 1.25 L/kWh for the vapor compression prototype, and 0.32 L/kWh for the thermoelectric cooling ...


Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran May 2019

Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran

Master's Theses

Micro- and nano-scale surface modifications have been a subject of great interest for enhancing the pool boiling heat transfer performance of immersion cooling systems due to their ability to augment surface area, improve wickability, and increase nucleation site density. However, many of the surface modification technologies that have been previously demonstrated show a lack of evidence concerning scalability for use at an industrial level. In this work, the pool boiling heat transfer performance of nanoporous anodic aluminum oxide (AAO) films, copper oxide (CuO) nanostructure coatings, and 1D roll-molded microfin arrays has been studied. Each of these technologies possess scalability in ...


Modeling The Effect Of A Compartment Fire On Spaces Adjacent To A Bulkhead With And Without Attachments, Carl E. Hendrickson Ii May 2019

Modeling The Effect Of A Compartment Fire On Spaces Adjacent To A Bulkhead With And Without Attachments, Carl E. Hendrickson Ii

University of New Orleans Theses and Dissertations

Structural fire protection is an integral component of shipboard fire safety. There are national and international regulations that delineate requirements for the insulation placed throughout ships. The attachments that penetrate the insulation for hanging wires and pipes can disrupt the integrity of the division, and cause a failure to adhere to the regulations. This problem will be analyzed by using a simplified lumped capacitance model and ANSYS FLUENT CFD. A standard time-temperature fire curve is applied to the fire side of the enclosure. The thermal conductivity of the insulation and steel are made to be temperature dependent. The density of ...


Repurposing Plastic Waste In El Cercado, Joseph Dooling, Kirby Townsend, Brendan Smith May 2019

Repurposing Plastic Waste In El Cercado, Joseph Dooling, Kirby Townsend, Brendan Smith

Honors Thesis

This project aims to assist the community of El Cercado in the Dominican Republic in turning their plastic waste into useful products. The design team developed a first iteration shredder, injector, and aluminum mold which future design teams could further iterate in order to make products out of waste plastic. Different products were researched to ensure that they can be sold or used in the community. The goal of producing these items is to stimulate economic activity in the community by creating economic opportunity. The design shall also be sustainable in three ways. It shall reuse plastic waste while also ...


Insulated Solar Electric Cooker With Phase Change Thermal Storage Medium, Justin Brett Unger, Nathan Robert Christler, Matthew Weeman, Marcus Edward Strutz May 2019

Insulated Solar Electric Cooker With Phase Change Thermal Storage Medium, Justin Brett Unger, Nathan Robert Christler, Matthew Weeman, Marcus Edward Strutz

Mechanical Engineering

This final design review document outlines the senior design project carried out by a team of four mechanical engineering students at the California Polytechnic State University – San Luis Obispo under the sponsorship of Dr. Peter Schwartz of the Cal Poly Physics department. The aim of this project was to improve upon the design of previously developed Insulated Solar Electric Cookers (ISECs) by adding a thermal storage system to allow for quicker cook times and the ability to cook food at non-peak solar hours. The team’s goal was to develop a working prototype utilizing a phase change medium as the ...


Design & Evaluation Of Cooling Systems For Photovoltaic Modules, Peter Leary Apr 2019

Design & Evaluation Of Cooling Systems For Photovoltaic Modules, Peter Leary

Honors Theses

There is a persistent need for further development and implementation of renewable energy sources, such as wind and solar. Due to the increase in global population, the disappearance of fossil fuels, and the reality of climate change, renewable power is needed now more than ever. One such renewable power technology is solar photovoltaic, otherwise known as PV. These modules work via silicon cells which are as semiconductors, outputting electrical energy when incident with solar radiation. This is done by separating electrons and protons within the cell. One of the largest issues with PV technology is that there is a linear ...


Cpu Cooling Pulse Device For Enhanced Heat Transfer, Hannah Farabee, Noémie L. Iñiguez, Hugo Nunez, Wendy Zwanka Apr 2019

Cpu Cooling Pulse Device For Enhanced Heat Transfer, Hannah Farabee, Noémie L. Iñiguez, Hugo Nunez, Wendy Zwanka

Senior Theses

Ice Dragon Cooling is a company which researches thermofluids and heat transfer technologies. The company’s present research focuses on HVAC and computer applications, with an emphasis on nanofluid development. To support Ice Dragon’s mission, the company wants a product that enhances heat transfer efficiency in liquid-cooled CPU systems. The product is to be a pulse device which increases the turbulence of a liquid across a computer CPU cooling block, thereby expediting heat transfer away from the CPU.

The needs for Ice Dragon Cooling were determined based on engineering knowledge and industry consultation. After further analysis, it was determined ...


Flow Behavior In Radial Rotating Detonation Engines, Scott A. Boller Mar 2019

Flow Behavior In Radial Rotating Detonation Engines, Scott A. Boller

Theses and Dissertations

Recent progress has been made in demonstrating Radial Rotating Detonation Engine (RRDE) technology for use in a compact Auxiliary Power Unit with a rapid response time. Investigation of RRDEs also suggests an increase in stable operating range, which is hypothesized to be due to the additional degree of freedom in the radial direction which the detonation wave can propagate. This investigation seeks to determine if the detonation wave is in fact changing its radial location. High speed photography was used to capture chemiluminescence of the detonation wave within the channel to examine its radial location, which was found to vary ...


Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack Mar 2019

Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack

Theses and Dissertations

The Ultra Compact Combustor (UCC) promises to greatly reduce the size of a gas turbine engine’s combustor by altering the manner in which fuel is burnt. Differing from the common axial flow combustor, the UCC utilizes a rotating flow, coaxial to the engine’s primary axis, in an outboard circumferential cavity as the primary combustion zone. The present study investigates two key UCC facets required to further this combustor design. The first area of investigation is cooling of the Hybrid Guide Vane (HGV). This UCC specific hardware acts as a combustor center body that alters the exit flow angle ...


Adding Semi-Structured Automated Grid Generation And The Menter-Shear Stress Turbulence Transport Model For Internal Combustion Engine Simulations To Novel Fem Lanl Combustion Codes, Brad Montgomery Philipbar Jan 2019

Adding Semi-Structured Automated Grid Generation And The Menter-Shear Stress Turbulence Transport Model For Internal Combustion Engine Simulations To Novel Fem Lanl Combustion Codes, Brad Montgomery Philipbar

Mechanical Engineering ETDs

The addition of GridPro semi-structured, automated generation of grids for complex moving boundaries for combustion engine applications and the Menter Shear Stress Turbulent Transfer (SST) model are being developed by Los Alamos National Laboratory. The software is called Fast, Easy, Accurate, and Robust Continuum Engineering (FEARCE). In addition to improving the time and effort required to build complex grid geometry for turbulent reactive multi-phase flow in internal combustion engines, the SST turbulence model has been programmed into the Predictor Corrector Fractional-Step (PCS) Finite Element Method (FEM) for reactive flow and turbulent incompressible flow regime validation is performed. The Reynolds-Averaged Navier-Stokes ...


Ignition And Extinction Behavior Of Fuels In A Microcombustor, Pawan Sharma Jan 2019

Ignition And Extinction Behavior Of Fuels In A Microcombustor, Pawan Sharma

LSU Doctoral Dissertations

Conventional fuel testing device-CFR engine requires large quantities of fuels, which makes it unsuitable for research of small samples of fuels. This current study seeks to address this limitation by using an externally heated microcombustor as an alternative fuel testing device. Mainly three combustion behaviors have been observed inside a microcombustor: strong flames at higher flow rates, Flames with Repetitive Extinction and Ignition (FREI) at intermediate flow rates, and weak flames at marginal flow rates. In previous studies, weak combustion behavior has been proven suitable to study fuel properties from small samples of fuels. Microcombustor experiments typically rely on flame ...


Networked Microgrid Optimization And Energy Management, Robert S. Jane Jan 2019

Networked Microgrid Optimization And Energy Management, Robert S. Jane

Dissertations, Master's Theses and Master's Reports

Military vehicles possess attributes consistent with a microgrid, containing electrical energy generation, storage, government furnished equipment (GFE), and the ability to share these capabilities via interconnection. Many military vehicles have significant energy storage capacity to satisfy silent watch requirements, making them particularly well-suited to share their energy storage capabilities with stationary microgrids for more efficient energy management. Further, the energy generation capacity and the fuel consumption rate of the vehicles are comparable to standard diesel generators, for certain scenarios, the use of the vehicles could result in more efficient operation. Energy management of a microgrid is an open area of ...


Reduction Of Nox Emissions In A Single Cylinder Diesel Engine Using Sncr With In-Cylinder Injection Of Aqueous Urea, Anthony Timpanaro Jan 2019

Reduction Of Nox Emissions In A Single Cylinder Diesel Engine Using Sncr With In-Cylinder Injection Of Aqueous Urea, Anthony Timpanaro

UNF Graduate Theses and Dissertations

The subject of this study is the effect of in-cylinder selective non-catalytic reduction (SNCR) of NOx emissions in diesel exhaust gas by means of direct injection of aqueous urea ((NH2)2CO) into the combustion chamber. A single cylinder diesel test engine was modified to accept an electronically controlled secondary common rail injection system to deliver the aqueous urea directly into the cylinder during engine operation.

Direct in-cylinder injection was chosen in order to ensure precise delivery of the reducing agent without the risk of any premature reactions taking place. Unlike direct in-cylinder injection of neat water, aqueous ...


Carbon Fiber Recycler : Fiber Reclaimer, Alexander Edwards Jan 2019

Carbon Fiber Recycler : Fiber Reclaimer, Alexander Edwards

All Undergraduate Projects

Boeing uses composite components for the 777x aircraft. The production of composite parts results in flashing (excess material) that must be trimmed and "thrown away" as scrap. Boeing is investigating means of recycling these scraps. The method proposed for this project is to delaminate and shred the composite material. The delamination process uses a ram to press two claw shaped devices together that bends and deforms the material in opposite directions. The chipper process uses counter rotating saw blades spaced 1/8” apart to produce small shredded material. This shredding material is pyrolyzed (heated) to decay the resin leaving the ...


Composite Recycler: Frame, Alfonso Olivera Jan 2019

Composite Recycler: Frame, Alfonso Olivera

All Undergraduate Projects

How can composites be recycled? The Composite Recycler is an ongoing project that started in September 2017. The purpose of this project was to create a machine that will delaminate the composites, cut them, and heat them up to separate the resin from the composites so they can be recycled. A group was put together for the 2018-2019 academic year to further the project as a whole improve the operation of the device. The existing base was used as well as the cutter and the power sources. The upgrades included; a housing to support the transport rollers and changing from ...


Calculation Of Scalar Isosurface Area And Applications, Kedar Prashant Shete Jan 2019

Calculation Of Scalar Isosurface Area And Applications, Kedar Prashant Shete

Masters Theses

The problem of calculating iso-surface statistics in turbulent flows is interesting for a number of reasons, some of them being combustion modeling, entrainment through turbulent/non-turbulent interfaces, calculating mass flux through iso-scalar surfaces and mapping of scalar fields. A fundamental effect of fuid turbulence is to wrinkle scalar iso-surfaces. A review of the literature shows that iso-surface calculations have primarily been done with geometric methods, which have challenges when used to calculate surfaces that have high complexity, such as in turbulent flows. In this thesis, we propose an alternative integral method and test it against analytical solutions. We present a ...


Propagation And Morphology Of Premixed Flames In Obstructed Channels Under Atmospheric And Supercritical Conditions, Abdulafeez Akinola Adebiyi Jan 2019

Propagation And Morphology Of Premixed Flames In Obstructed Channels Under Atmospheric And Supercritical Conditions, Abdulafeez Akinola Adebiyi

Graduate Theses, Dissertations, and Problem Reports

The understanding of the morphology and propagation of premixed flames in channels is vital for the design and development of efficient propulsion systems requiring high heat release, such as pulse detonation engines, and for resolving accidental fire in industrial conduits. In this work, extensive computational simulation of premixed flames in channels (with rectangular and cylindrical cross sections) with closely packed obstacles are carried out with the goal of providing insights into flame propagation under various conditions which would be invaluable to the development and safety of energy and propulsion systems as well as for the mitigation of accidental fires in ...


Scaling Analysis And Experimental Investigation Of A Rotating Detonation Engine, David Thomas Billups Jan 2019

Scaling Analysis And Experimental Investigation Of A Rotating Detonation Engine, David Thomas Billups

Graduate Theses, Dissertations, and Problem Reports

Pressure gain combustion (PGC) technologies, specifically rotating detonation engines (RDEs), are poised to provide the next big leap in gas turbine engine advancement, significantly increasing the thermal. RDEs make use of thermodynamic advantages of isochoric as opposed to isobaric combustion. Theorized to increase thermal efficiency by up to 7% [1], the RDE would have significant impact on reducing anthropogenic carbon emissions. In addition to efficiency gains, the RDE also provides mechanical simplicity and reduced size advantages compared to it’s traditional counterparts and PGC competition.

The United States (U.S.) Department of Energy (DOE) National Energy Technology Laboratory (NETL) maintains ...


Computational Design Of Staged Pressurized Oxy-Coal Combustion, Gideon Ozioma Udochukwu Jan 2019

Computational Design Of Staged Pressurized Oxy-Coal Combustion, Gideon Ozioma Udochukwu

Graduate Theses, Dissertations, and Problem Reports

Staged pressurized oxy-coal combustion (SPOC) is nowadays a promising technology to be used for low-cost, low-emission, high-efficiency power generation. The objective of this thesis is to compliment the experiments ongoing at the Washington University, St. Louis (WUSTL) by means of numerical simulations, thereby providing better understanding of the fluid flow, turbulence, combustion characteristics, particle dynamics and heat transfer. Carbon dioxide (CO2) is injected alongside the coal, for its carriage. A small amount of methane (CH4) is also injected alongside the coal to maintain a steady flame. The simulations are performed for a 3D geometry with the following energy source distribution ...


The Effects Of 3d Printing Parameters And Surface Treatments On Convective Heat Transfer Performance, Lucas N. Pereira Jan 2019

The Effects Of 3d Printing Parameters And Surface Treatments On Convective Heat Transfer Performance, Lucas N. Pereira

Electronic Theses and Dissertations

Additive manufacturing technology and applications have quickly expanded in many industries over the last five years. As additive manufacturing is studied and refined, improvements in resolution and strength have helped propel further growth of the industry. This study focuses on an additive manufacturing technology called fused filament fabrication (FFF). FFF involves the extrusion and layer-by-layer deposition of a molten thermoplastic material to create the desired part. One potential new application of fused filament fabrication is the manufacture of heat exchangers and heat sinks. This study focuses on developing baseline experimental data related to convective heat transfer coefficients over surfaces of ...


Influence Of Micro-Nucleate Boiling On Annular Flow Regime Heat Transfer Coefficient Values And Flow Parameters – For High Heat-Flux Flow Boiling Of Water, Soroush Sepahyar Jan 2019

Influence Of Micro-Nucleate Boiling On Annular Flow Regime Heat Transfer Coefficient Values And Flow Parameters – For High Heat-Flux Flow Boiling Of Water, Soroush Sepahyar

Dissertations, Master's Theses and Master's Reports

Analysis of results from steady and steady-in-the-mean high heat-flux (15 - 70 W/cm2, with water as working fluid) shear driven annular flow-boiling experiments presented here - and low heat-flux (0.1- 1 W/cm2, with FC-72 as working fluid) experiments presented elsewhere – together lead to a key conclusion. The conclusion is that heat carrying nucleation rates go often undetected by the typically used visualization approaches for flow boiling – as such flows often involve µm- to sub- µm scale bubble diameters in millimeter-scale ducts. These nucleation rates play a significant role in most of the so-called convective annular regimes (of ...


Paddle Mixer-Extrusion Reactor For Torrefaction And Pyrolysis, Stas Zinchik Jan 2019

Paddle Mixer-Extrusion Reactor For Torrefaction And Pyrolysis, Stas Zinchik

Dissertations, Master's Theses and Master's Reports

This work is focused on the fundamental understanding and the development of paddle mixer reactors (or modified screw augers). This work will contribute to the effort of the thermal conversion of biomass and wastes. We developed and studied two paddle systems (i) 25-mm lab-scale (up to 1 kg/hr) and (ii) 101-mm pilot-scale (up to 100 kg/hr). Thermal behavior of the two systems was studied and it was estimated that the lab-scale system has a high heating rate of up to 530 °C/s. Residence times were thoroughly measured and were determined as a function of rotation frequency and ...


The Investigation Of Noise, Vibrations And Emissions Of Aero-Gas Turbine Combustion With Synthetic Kerosene Fuels, Margaret Kilpatrick Jan 2019

The Investigation Of Noise, Vibrations And Emissions Of Aero-Gas Turbine Combustion With Synthetic Kerosene Fuels, Margaret Kilpatrick

University Honors Program Theses

Climatic changes from aviation emissions are complex and include effects of greenhouse gases such as: CO2, NOx, and aerosols. For that reason, the objectives of this study were to investigate the noise, vibrations and emissions characteristics of synthetic kerosene combustion in an aerospace gas turbine to reduce the engine’s environmental impact. Sustainably produced synthetic kerosene is known for having low soot emissions due to little to no aromatics (compounds that create particle pollutants), and for being a sustainable alternative fuel source to imported oil. The noise and sound levels were collected using Bruel & Kjaer microphones to measure various mid ...


On The Fuel Spray Applications Of Multi-Phase Eulerian Cfd Techniques, Gabriel Lev Jacobsohn Jan 2019

On The Fuel Spray Applications Of Multi-Phase Eulerian Cfd Techniques, Gabriel Lev Jacobsohn

Masters Theses

Eulerian-Eulerian Computational Fluid Dynamics (CFD) techniques continue to show promise for characterizing the internal flow and near-field spray for various fuel injection systems. These regions are difficult to observe experimentally, and simulations of such regions are limited by computational expense or reliance on empiricism using other methods. The physics governing spray atomization are first introduced. Impinging jet sprays and Gasoline Direct Injection (GDI) are selected as applications, and modern computational/experimental approaches to their study are reviewed. Two in-house CFD solvers are described and subsequently applied in several case studies. Accurate prediction of the liquid distribution in a like-doublet impinging ...


Laser Ablation Of Aluminum, Erika Nosal, Zachary Rahe, Arthur Pamboukis Jan 2019

Laser Ablation Of Aluminum, Erika Nosal, Zachary Rahe, Arthur Pamboukis

Williams Honors College, Honors Research Projects

The laser ablation of metal carries relevance in a variety of engineering industries. This includes, but is not limited to, processes such as micromachining, or implementation on aircraft weaponry. The latter application is the reasoning for why aluminum is the specific metal in consideration, as it is commonly used for the construction of aircraft components.

The scope of this project was to optimize the energy dispersed through laser ablation on aluminum by mathematical modeling. The transient conduction process in the aluminum was modeled using a 2-dimensional cylindrical coordinate system in both MATLAB and ANSYS/Fluent. These models were adopted to ...


Improving The Delivered Specific Impulse Of Composite Rocket Propellant Through Alteration Of Chemical Composition: Methodology And Parameters For Characterization Of Propellant And Validation Of Simulation Software Common To The Amateur Rocketry Community, Isaac O'Brien, Austin Ryan Jan 2019

Improving The Delivered Specific Impulse Of Composite Rocket Propellant Through Alteration Of Chemical Composition: Methodology And Parameters For Characterization Of Propellant And Validation Of Simulation Software Common To The Amateur Rocketry Community, Isaac O'Brien, Austin Ryan

Williams Honors College, Honors Research Projects

In this study, two solid composite rocket propellants were designed utilizing ProPEP, a rocket propellant formulation software common in the amateur and hobby rocketry communities. The two propellants were designed to optimize specific impulse relative to a literature propellant designed by 1020 Research Labs. The literature propellant was also tested in order to validate the design of experiment as well as the mixing and testing procedures. All three propellants, which includes the literature propellant RCS-P, and the two novel propellants AKR-P1 and AKR-P2 were characterized with static tests. The results of the static tests provide data on propellant performance and ...