Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Theses/Dissertations

Computer Sciences

Institution
Keyword
Publication

Articles 1 - 30 of 67

Full-Text Articles in Engineering

Optimal Sampling Paths For Autonomous Vehicles In Uncertain Ocean Flows, Andrew J. De Stefan Aug 2019

Optimal Sampling Paths For Autonomous Vehicles In Uncertain Ocean Flows, Andrew J. De Stefan

Dissertations

Despite an extensive history of oceanic observation, researchers have only begun to build a complete picture of oceanic currents. Sparsity of instrumentation has created the need to maximize the information extracted from every source of data in building this picture. Within the last few decades, autonomous vehicles, or AVs, have been employed as tools to aid in this research initiative. Unmanned and self-propelled, AVs are capable of spending weeks, if not months, exploring and monitoring the oceans. However, the quality of data acquired by these vehicles is highly dependent on the paths along which they collect their observational data. The ...


Formally Designing And Implementing Cyber Security Mechanisms In Industrial Control Networks., Mehdi Sabraoui Aug 2019

Formally Designing And Implementing Cyber Security Mechanisms In Industrial Control Networks., Mehdi Sabraoui

Electronic Theses and Dissertations

This dissertation describes progress in the state-of-the-art for developing and deploying formally verified cyber security devices in industrial control networks. It begins by detailing the unique struggles that are faced in industrial control networks and why concepts and technologies developed for securing traditional networks might not be appropriate. It uses these unique struggles and examples of contemporary cyber-attacks targeting control systems to argue that progress in securing control systems is best met with formal verification of systems, their specifications, and their security properties. This dissertation then presents a development process and identifies two technologies, TLA+ and seL4, that can be ...


Developing 5gl Concepts From User Interactions, David Stuckless Meyer Jul 2019

Developing 5gl Concepts From User Interactions, David Stuckless Meyer

Masters Theses

In the fulfilling of the contracts generated in Test Driven Development, a developer could be said to act as a constraint solver, similar to those used by a 5th Generation Language(5GL). This thesis presents the hypothesis that 5GL linguistic mechanics, such as facts, rules and goals, will be emergent in the communications of developer pairs performing Test Driven Development, validating that 5GL syntax is congruent with the ways that practitioners communicate. Along the way, nomenclatures and linguistic patterns may be observed that could inform the design of future 5GL languages.


Field Drilling Data Cleaning And Preparation For Data Analytics Applications, Daniel Cardoso Braga Jun 2019

Field Drilling Data Cleaning And Preparation For Data Analytics Applications, Daniel Cardoso Braga

LSU Master's Theses

Throughout the history of oil well drilling, service providers have been continuously striving to improve performance and reduce total drilling costs to operating companies. Despite constant improvement in tools, products, and processes, data science has not played a large part in oil well drilling. With the implementation of data science in the energy sector, companies have come to see significant value in efficiently processing the massive amounts of data produced by the multitude of internet of thing (IOT) sensors at the rig. The scope of this project is to combine academia and industry experience to analyze data from 13 different ...


Grammar-Based Procedurally Generated Village Creation Tool, Kevin Matthew Graves Jun 2019

Grammar-Based Procedurally Generated Village Creation Tool, Kevin Matthew Graves

Computer Engineering

This project is a 3D village generator tool for Unity. It consists of three components: a building, mountain, and river generator. All of these generators use grammar-based procedural generation in order to create a unique and logical village and landscape each time the program is run.


Labeling Paths With Convolutional Neural Networks, Sean Wallace, Kyle Wuerch Jun 2019

Labeling Paths With Convolutional Neural Networks, Sean Wallace, Kyle Wuerch

Computer Engineering

With the increasing development of autonomous vehicles, being able to detect driveable paths in arbitrary environments has become a prevalent problem in multiple industries. This project explores a technique which utilizes a discretized output map that is used to color an image based on the confidence that each block is a driveable path. This was done using a generalized convolutional neural network that was trained on a set of 3000 images taken from the perspective of a robot along with matching masks marking which portion of the image was a driveable path. The techniques used allowed for a labeling accuracy ...


Reach - A Community Service Application, Samuel Noel Magana Jun 2019

Reach - A Community Service Application, Samuel Noel Magana

Computer Engineering

Communities are familiar threads that unite people through several shared attributes and interests. These commonalities are the core elements that link and bond us together. Many of us are part of multiple communities, moving in and out of them depending on our needs. These common threads allow us to support and advocate for each other when facing a common threat or difficult situation. Healthy and vibrant communities are fundamental to the operation of our society. These interactions within our communities define the way we as individuals interact with each other, and society at large. Being part of a community helps ...


Identifying Hourly Traffic Patterns With Python Deep Learning, Christopher L. Leavitt Jun 2019

Identifying Hourly Traffic Patterns With Python Deep Learning, Christopher L. Leavitt

Computer Engineering

This project was designed to explore and analyze the potential abilities and usefulness of applying machine learning models to data collected by parking sensors at a major metro shopping mall. By examining patterns in rates at which customer enter and exit parking garages on the campus of the Bellevue Collection shopping mall in Bellevue, Washington, a recurrent neural network will use data points from the previous hours will be trained to forecast future trends.


Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji Jun 2019

Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji

Honors Theses

Soft robotics is an emerging field of research due to its potential to explore and operate in unstructured, rugged, and dynamic environments. However, the properties that make soft robots compelling also make them difficult to robustly control. Here at Union, we developed the world’s first wireless soft tensegrity robot. The goal of my thesis is to explore effective and efficient methods to explore the diverse behavior our tensegrity robot. We will achieve that by applying state-of-art machine learning technique and a novelty search algorithm.


Implementation Of Multivariate Artificial Neural Networks Coupled With Genetic Algorithms For The Multi-Objective Property Prediction And Optimization Of Emulsion Polymers, David Chisholm Jun 2019

Implementation Of Multivariate Artificial Neural Networks Coupled With Genetic Algorithms For The Multi-Objective Property Prediction And Optimization Of Emulsion Polymers, David Chisholm

Master's Theses and Project Reports

Machine learning has been gaining popularity over the past few decades as computers have become more advanced. On a fundamental level, machine learning consists of the use of computerized statistical methods to analyze data and discover trends that may not have been obvious or otherwise observable previously. These trends can then be used to make predictions on new data and explore entirely new design spaces. Methods vary from simple linear regression to highly complex neural networks, but the end goal is similar. The application of these methods to material property prediction and new material discovery has been of high interest ...


The Performance Cost Of Security, Lucy R. Bowen Jun 2019

The Performance Cost Of Security, Lucy R. Bowen

Master's Theses and Project Reports

Historically, performance has been the most important feature when optimizing computer hardware. Modern processors are so highly optimized that every cycle of computation time matters. However, this practice of optimizing for performance at all costs has been called into question by new microarchitectural attacks, e.g. Meltdown and Spectre. Microarchitectural attacks exploit the effects of microarchitectural components or optimizations in order to leak data to an attacker. These attacks have caused processor manufacturers to introduce performance impacting mitigations in both software and silicon.

To investigate the performance impact of the various mitigations, a test suite of forty-seven different tests was ...


Probabilistic Spiking Neural Networks : Supervised, Unsupervised And Adversarial Trainings, Alireza Bagheri May 2019

Probabilistic Spiking Neural Networks : Supervised, Unsupervised And Adversarial Trainings, Alireza Bagheri

Dissertations

Spiking Neural Networks (SNNs), or third-generation neural networks, are networks of computation units, called neurons, in which each neuron with internal analogue dynamics receives as input and produces as output spiking, that is, binary sparse, signals. In contrast, second-generation neural networks, termed as Artificial Neural Networks (ANNs), rely on simple static non-linear neurons that are known to be energy-intensive, hindering their implementations on energy-limited processors such as mobile devices. The sparse event-based characteristics of SNNs for information transmission and encoding have made them more feasible for highly energy-efficient neuromorphic computing architectures. The most existing training algorithms for SNNs are based ...


Blind Separation For Intermittent Sources Via Sparse Dictionary Learning, Annan Dong May 2019

Blind Separation For Intermittent Sources Via Sparse Dictionary Learning, Annan Dong

Dissertations

Radio frequency sources are observed at a fusion center via sensor measurements made over slow flat-fading channels. The number of sources may be larger than the number of sensors, but their activity is sparse and intermittent with bursty transmission patterns. To account for this, sources are modeled as hidden Markov models with known or unknown parameters. The problem of blind source estimation in the absence of channel state information is tackled via a novel algorithm, consisting of a dictionary learning (DL) stage and a per-source stochastic filtering (PSF) stage. The two stages work in tandem, with the latter operating on ...


Workload Allocation In Mobile Edge Computing Empowered Internet Of Things, Qiang Fan May 2019

Workload Allocation In Mobile Edge Computing Empowered Internet Of Things, Qiang Fan

Dissertations

In the past few years, a tremendous number of smart devices and objects, such as smart phones, wearable devices, industrial and utility components, are equipped with sensors to sense the real-time physical information from the environment. Hence, Internet of Things (IoT) is introduced, where various smart devices are connected with each other via the internet and empowered with data analytics. Owing to the high volume and fast velocity of data streams generated by IoT devices, the cloud that can provision flexible and efficient computing resources is employed as a smart "brain" to process and store the big data generated from ...


Management And Security Of Multi-Cloud Applications, Lav Gupta May 2019

Management And Security Of Multi-Cloud Applications, Lav Gupta

Engineering and Applied Science Theses & Dissertations

Single cloud management platform technology has reached maturity and is quite successful in information technology applications. Enterprises and application service providers are increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in and cloud blackouts and, at the same time, get the benefits like competitive pricing, the flexibility of resource provisioning and better points of presence. Another class of applications that are getting cloud service providers increasingly interested in is the carriers' virtualized network services. However, virtualized carrier services require high levels of availability and performance and impose stringent requirements on cloud services. They necessitate the ...


Fluid Transport In Porous Media For Engineering Applications, Eric M. Benner May 2019

Fluid Transport In Porous Media For Engineering Applications, Eric M. Benner

Chemical and Biological Engineering ETDs

This doctoral dissertation presents three topics in modeling fluid transport through porous media used in engineering applications. The results provide insights into the design of fuel cell components, catalyst and drug delivery particles, and aluminum- based materials. Analytical and computational methods are utilized for the modeling of the systems of interest. Theoretical analysis of capillary-driven transport in porous media show that both geometric and evaporation effects significantly change the time dependent behavior of liquid imbibition and give a steady state flux into the medium. The evaporation–capillary number is significant in determining the time-dependent behavior of capillary flows in porous ...


Ai-Based 3d Game Simulators, Yuhang Liao May 2019

Ai-Based 3d Game Simulators, Yuhang Liao

Senior Honors Theses

he world is full of smart devices now, and many are featured with Artificial Intelligence (AI), which makes devices more friendly and accessible to more and more people. It truly pushes the technology forward. AI is a technology that makes computers do things like or beyond humans. For instance, according to Docherty’s research, AI can make medical service more affordable and improve patients’ quality of life [1]. Doctors are human, they need to take a break. However, it makes harder for patients to get right treatment in time. On the other hand, doctors need to make living by curing ...


Differential Estimation Of Audiograms Using Gaussian Process Active Model Selection, Trevor Larsen May 2019

Differential Estimation Of Audiograms Using Gaussian Process Active Model Selection, Trevor Larsen

Engineering and Applied Science Theses & Dissertations

Classical methods for psychometric function estimation either require excessive resources to perform, as in the method of constants, or produce only a low resolution approximation of the target psychometric function, as in adaptive staircase or up-down procedures. This thesis makes two primary contributions to the estimation of the audiogram, a clinically relevant psychometric function estimated by querying a patient’s for audibility of a collection of tones. First, it covers the implementation of a Gaussian process model for learning an audiogram using another audiogram as a prior belief to speed up the learning procedure. Second, it implements a use case ...


The Effects Of Finite Precision On The Simulation Of The Double Pendulum, Rebecca Wild May 2019

The Effects Of Finite Precision On The Simulation Of The Double Pendulum, Rebecca Wild

Senior Honors Projects, 2010-current

We use mathematics to study physical problems because abstracting the information allows us to better analyze what could happen given any range and combination of parameters. The problem is that for complicated systems mathematical analysis becomes extremely cumbersome. The only effective and reasonable way to study the behavior of such systems is to simulate the event on a computer. However, the fact that the set of floating-point numbers is finite and the fact that they are unevenly distributed over the real number line raises a number of concerns when trying to simulate systems with chaotic behavior. In this research we ...


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino May 2019

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Undergraduate Theses and Capstone Projects

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats and an increasing popularity of self-driving cars. We simulated the motion of an autonomous vehicle using computational models. The simulation models the motion of a small-scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as various biases ...


Machine Intelligence For Advanced Medical Data Analysis: Manifold Learning Approach, Fereshteh S Bashiri May 2019

Machine Intelligence For Advanced Medical Data Analysis: Manifold Learning Approach, Fereshteh S Bashiri

Theses and Dissertations

In the current work, linear and non-linear manifold learning techniques, specifically Principle Component Analysis (PCA) and Laplacian Eigenmaps, are studied in detail. Their applications in medical image and shape analysis are investigated.

In the first contribution, a manifold learning-based multi-modal image registration technique is developed, which results in a unified intensity system through intensity transformation between the reference and sensed images. The transformation eliminates intensity variations in multi-modal medical scans and hence facilitates employing well-studied mono-modal registration techniques. The method can be used for registering multi-modal images with full and partial data.

Next, a manifold learning-based scale invariant global shape ...


Applications Of Fog Computing In Video Streaming, Kyle Smith May 2019

Applications Of Fog Computing In Video Streaming, Kyle Smith

Computer Science and Computer Engineering Undergraduate Honors Theses

The purpose of this paper is to show the viability of fog computing in the area of video streaming in vehicles. With the rise of autonomous vehicles, there needs to be a viable entertainment option for users. The cloud fails to address these options due to latency problems experienced during high internet traffic. To improve video streaming speeds, fog computing seems to be the best option. Fog computing brings the cloud closer to the user through the use of intermediary devices known as fog nodes. It does not attempt to replace the cloud but improve the cloud by allowing faster ...


An Explainable Sequence-Based Deep Learning Predictor With Applications To Song Recommendation And Text Classification., Khalil Damak May 2019

An Explainable Sequence-Based Deep Learning Predictor With Applications To Song Recommendation And Text Classification., Khalil Damak

Electronic Theses and Dissertations

Streaming applications are now the predominant tools for listening to music. What makes the success of such software is the availability of songs and especially their ability to provide users with relevant personalized recommendations. State of the art music recommender systems mainly rely on either Matrix factorization-based collaborative filtering approaches or deep learning architectures. Deep learning models usually use metadata for content-based filtering or predict the next user interaction (listening to a song) using a memory-based deep learning structure that learns from temporal sequences of user actions. Despite advances in deep learning models for song recommendation systems, none has taken ...


Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford May 2019

Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford

Theses and Dissertations

This thesis entails motor control system analysis, design, and optimization for the University of Arkansas NASA Robotic Mining Competition robot. The open-loop system is to be modeled and simulated in order to achieve a desired rapid, yet smooth response to a change in input. The initial goal of this work is to find a repeatable, generalized step-by-step process that can be used to tune the gains of a PID controller for multiple different operating points. Then, sensors are to be modeled onto the robot within a feedback loop to develop an error signal and to make the control system self-corrective ...


Fault Adaptive Workload Allocation For Complex Manufacturing Systems, Charlie B. Destefano May 2019

Fault Adaptive Workload Allocation For Complex Manufacturing Systems, Charlie B. Destefano

Theses and Dissertations

This research proposes novel fault adaptive workload allocation (FAWA) strategies for the health management of complex manufacturing systems. The primary goal of these strategies is to minimize maintenance costs and maximize production by strategically controlling when and where failures occur through condition-based workload allocation.

For complex systems that are capable of performing tasks a variety of different ways, such as an industrial robot arm that can move between locations using different joint angle configurations and path trajectories, each option, i.e. mission plan, will result in different degradation rates and life-expectancies. Consequently, this can make it difficult to predict when ...


Hardware Ip Classification Through Weighted Characteristics, Brendan Mcgeehan May 2019

Hardware Ip Classification Through Weighted Characteristics, Brendan Mcgeehan

Theses and Dissertations

Today’s business model for hardware designs frequently incorporates third-party Intellectual Property (IP) due to the many benefits it can bring to a company. For instance, outsourcing certain components of an overall design can reduce time-to-market by allowing each party to specialize and perfect a specific part of the overall design. However, allowing third-party involvement also increases the possibility of malicious attacks, such as hardware Trojan insertion. Trojan insertion is a particularly dangerous security threat because testing the functionality of an IP can often leave the Trojan undetected. Therefore, this thesis work provides an improvement on a Trojan detection method ...


Model Development And Assessment Of The Gate Network In A High-Performance Sic Power Module, William Austin Curbow May 2019

Model Development And Assessment Of The Gate Network In A High-Performance Sic Power Module, William Austin Curbow

Theses and Dissertations

The main objective of this effort is to determine points of weakness in the gate network of a high-performance SiC power module and to offer remedies to these issues to increase the overall performance, robustness, and reliability of the technology. In order to accomplish this goal, a highly accurate model of the gate network is developed through three methods of parameter extraction: calculation, simulation, and measurement. A SPICE model of the gate network is developed to analyze four electrical issues in a high-speed, SiC-based power module including the necessary internal gate resistance for damping under-voltage and over-voltage transients, the disparity ...


Predicting Chaotic Behavior In Electrical Circuits, Trey Scofield Apr 2019

Predicting Chaotic Behavior In Electrical Circuits, Trey Scofield

Mathematics, Engineering and Computer Science Undergraduate Theses

Chaotic behavior is a natural phenomenon that can be found all around us in our daily lives. This project is focused on analyzing the behavior in forced RL-Diode (resistor, inductor, and diode) electrical circuits. We determined that when the sinusoidal input voltage of the circuit was increased, the voltage across the diode experienced period doubling, quadrupling, and then eventually chaos. Furthermore, this project is focused on predicting when and how these chaotic properties emerged from data that we collected. The primary machine learning technique that is used to predict chaos properties is a recurring neural network called an echo state ...


Variable Speed Limit Control At Sag Curves Through Connected Vehicles: Implications Of Alternative Communications And Sensing Technologies, Reza Vatani Nezafat Apr 2019

Variable Speed Limit Control At Sag Curves Through Connected Vehicles: Implications Of Alternative Communications And Sensing Technologies, Reza Vatani Nezafat

Civil & Environmental Engineering Theses & Dissertations

Connected vehicles (CVs) will enable new applications to improve traffic flow. This study’s focus is to investigate how potential implementation of variable speed limit (VSL) through different types of communication and sensing technologies on CVs may improve traffic flow at a sag curve. At sag curves, the gradient changes from negative to positive values which causes a reduction in the roadway capacity and congestion. A VSL algorithm is developed and implemented in a simulation environment for controlling the inflow of vehicles to a sag curve on a freeway to minimize delays and increase throughput. Both vehicle-to-vehicle (V2V) and infrastructure-to-vehicle ...


Cyber Security- A New Secured Password Generation Algorithm With Graphical Authentication And Alphanumeric Passwords Along With Encryption, Akash Rao Apr 2019

Cyber Security- A New Secured Password Generation Algorithm With Graphical Authentication And Alphanumeric Passwords Along With Encryption, Akash Rao

Electrical & Computer Engineering Theses & Disssertations

Graphical passwords are always considered as an alternative of alphanumeric passwords for their better memorability and usability [1]. Alphanumeric passwords provide an adequate amount of satisfaction, but they do not offer better memorability compared to graphical passwords [1].

On the other hand, graphical passwords are considered less secured and provide better memorability [1]. Therefore many researchers have researched on graphical passwords to overcome the vulnerability. One of the most significant weaknesses of the graphical passwords is "Shoulder Surfing Attack," which means, sneaking into a victim's computer to learn the whole password or part of password or some confidential information ...