Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Strengthening Of Corroded Steel Structures Using Cfrp – An Experimental Review, Ghada El-Mahdy Ph.D., P.Eng, Abdallah H. Yassin, Abdel El Rahman Khaled Dec 2019

Strengthening Of Corroded Steel Structures Using Cfrp – An Experimental Review, Ghada El-Mahdy Ph.D., P.Eng, Abdallah H. Yassin, Abdel El Rahman Khaled

Civil Engineering

Fibre reinforced polymers (FRP) have been widely used to strengthen reinforced concrete structures, however, nowadays their use to strengthen steel structures is under investigation. In particular, the need to strengthen corroded steel structures found in aggressive environments, such as marine environments, which have undergone a reduction in cross-sectional area and hence a reduction in their load-carrying capacity is in need of studying. The main problems that arise when using carbon fibre reinforced polymer (CFRP) sheets to strengthen steel structures is the weakness in the interfacial bond between the CFRP and the steel surface, the thinness of CFRP sheet, and the …


Synergistic Effect Of Nanocoatings For Corrosion And Wear Protection Of Steel Surfaces, Jaime Taha-Tijerina, Laura Peña Parás, Antonio Sánchez Fernández, Demófilo Maldonado Cortés, Pablo Sarmiento Barbosa, Jesús Rolando Adán López Dec 2019

Synergistic Effect Of Nanocoatings For Corrosion And Wear Protection Of Steel Surfaces, Jaime Taha-Tijerina, Laura Peña Parás, Antonio Sánchez Fernández, Demófilo Maldonado Cortés, Pablo Sarmiento Barbosa, Jesús Rolando Adán López

Informatics and Engineering Systems Faculty Publications and Presentations

The purpose of this paper is to evaluate the corrosion and wear protection of a steel substrate by epoxy vinyl ester nanocomposite coatings with Zn and TiO2 nanoparticle fillers. Steel substrates were coated with epoxy vinyl ester nanocomposites, varying Zn and TiO2 nanofiller concentrations and combinations of both nanoparticles. Corrosion resistance was evaluated by salt spray fog test during 480 h, according to ASTM B-117. The degree of damage was obtained quantitatively by measuring the enhancement in corroded area compared to the scribe mark. Tribological evaluation was performed with a ball-on-disk tribotester, according to ASTM G-99. Results showed that the …


Development Of Local And Global Corrosion Sensing Technique To Monitor Structural Behavior Of Prestressed Concrete Structures, Dewan Z. Hossain Nov 2019

Development Of Local And Global Corrosion Sensing Technique To Monitor Structural Behavior Of Prestressed Concrete Structures, Dewan Z. Hossain

FIU Electronic Theses and Dissertations

Corrosion of steel rebar in reinforced concrete structures is a concern for highway bridge owners. According to 2002 study by the Federal Highway Administration, ~15% of the highway bridges in the US are structurally deficient due to corrosion and have an estimated annual direct cost of $8.3 billion. Generally, in post-tensioned bridges, ducts filled with poor or incomplete grouting can allow the tendons to come into contact with water, leading to corrosion and fracture. Although new and improved procedures of grouting have been developed to reduce the instances of poor grouting, the problem of how to reliably inspect tendons on …


Corrosion Durability Of A Nano-Particle Enriched Zinc-Rich Coating System For Highway Steel Bridges, Saiada Fuadi Fancy Nov 2019

Corrosion Durability Of A Nano-Particle Enriched Zinc-Rich Coating System For Highway Steel Bridges, Saiada Fuadi Fancy

FIU Electronic Theses and Dissertations

Corrosion is a major concern for the long-term durability and structural integrity of steel components of highway bridges when unprotected. The application of protective coatings has been widely used for corrosion mitigation of atmospherically exposed structural steel. At present, the zinc-rich primer (ZRP) based three-coat system is widely used in the United States. The metallic zinc pigment ideally would provide corrosion resistance by sacrificial as well as barrier protection. The life of these coating systems is at best only half of the bridge design life. Furthermore, premature degradation may occur if there are flaws in the system due to improper …


The Influence Of Incorporation Of Mn On The Pitting Corrosion Performance Of Crfeconi High Entropy Alloy At Different Temperatures, H. Torbati-Sarraf, Mitra Shabani, Paul D. Jablonski, Garrett J. Pataky, A. Poursaee Aug 2019

The Influence Of Incorporation Of Mn On The Pitting Corrosion Performance Of Crfeconi High Entropy Alloy At Different Temperatures, H. Torbati-Sarraf, Mitra Shabani, Paul D. Jablonski, Garrett J. Pataky, A. Poursaee

Publications

The electrochemical behavior and susceptibility to pitting corrosion of CrFeCoNi and CrMnFeCoNi high entropy alloys were studied in a 0.1 M NaCl solution at temperatures ranging from 25 to 75 °C. Electrochemical measurements revealed that CrMnFeCoNi is more susceptible to oxide film breakdown and localized corrosion compared to CrFeCoNi. Post corrosion microscopic observations showed severe pitting corrosion for CrMnFeCoNi in higher temperatures compared to CrFeCoNi. Based on in-depth XPS profile measurements on the remaining oxide films, this behavior was attributed to the depletion of Cr in the oxide film and detrimental presence of Mn in the matrix solid solution of …


Retrofitting Of Bridge Elements Subjected To Predominantly Axial Load Using Uhpc Shell, Mahsa Farzad Apr 2019

Retrofitting Of Bridge Elements Subjected To Predominantly Axial Load Using Uhpc Shell, Mahsa Farzad

FIU Electronic Theses and Dissertations

In the United States, ~30% of the ~600,000 highway bridges are categorized as structurally deficient or functionally obsolete. These bridges should be replaced or upgraded to sustain the transportation needs of the growing public and private sectors of the U.S. economy. It is not uncommon for structures to have advanced levels of corrosion-induced damage where major repair and maintenance works are required. However, the transportation infrastructure may undergo disruption during rehabilitation causing interruption to critical economic public, civil and commercial activities. This mandates the development of new techniques and materials for accelerated rehabilitation and resilience. To address this issue, a …


Limit Equilibrium Method-Based Shear Strength Prediction For Corroded Reinforced Concrete Beam With Inclined Bars, Yafei Ma, Baoyong Lu, Zhongzhao Guo, Lei Wang, Hailong Chen, Jianren Zhang Mar 2019

Limit Equilibrium Method-Based Shear Strength Prediction For Corroded Reinforced Concrete Beam With Inclined Bars, Yafei Ma, Baoyong Lu, Zhongzhao Guo, Lei Wang, Hailong Chen, Jianren Zhang

Mechanical Engineering Faculty Publications

Shear strength is a widely investigated parameter for reinforced concrete structures. The corrosion of reinforcement results in shear strength reduction. Corrosion has become one of the main deterioration factors in reinforced concrete beam. This paper proposes a shear strength model for beams with inclined bars based on a limit equilibrium method. The proposed model can be applied to both corroded and uncorroded reinforced concrete beams. Besides the tensile strength of longitudinal steel bars, the shear capacity provided by the concrete on the top of the diagonal crack, the tensile force of the shear steel at the diagonal crack, the degradation …


Corrosion Initiation And Propagation On Carburized Martensitic Stainless Steel Surfaces Studied Via Advanced Scanning Probe Microscopy, Armen Kvryan, Corey M. Efaw, Kari A. Higginbotham, Olivia O. Maryon, Paul H. Davis, Elton Graugnard, Michael F. Hurley Mar 2019

Corrosion Initiation And Propagation On Carburized Martensitic Stainless Steel Surfaces Studied Via Advanced Scanning Probe Microscopy, Armen Kvryan, Corey M. Efaw, Kari A. Higginbotham, Olivia O. Maryon, Paul H. Davis, Elton Graugnard, Michael F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

Historically, high carbon steels have been used in mechanical applications because their high surface hardness contributes to excellent wear performance. However, in aggressive environments, current bearing steels exhibit insufficient corrosion resistance. Martensitic stainless steels are attractive for bearing applications due to their high corrosion resistance and ability to be surface hardened via carburizing heat treatments. Here three different carburizing heat treatments were applied to UNS S42670: a high-temperature temper (HTT), a low-temperature temper (LTT), and carbo-nitriding (CN). Magnetic force microscopy showed differences in magnetic domains between the matrix and carbides, while scanning Kelvin probe force microscopy (SKPFM) revealed a 90–200 …


Periodic Deprivation Of Gaseous Hydrogen Sulfide Affects The Activity Of The Concrete Corrosion Layer In Sewers, Xiaoyan Sun, Guangming Jiang, Philip Bond, Jurg Keller Jan 2019

Periodic Deprivation Of Gaseous Hydrogen Sulfide Affects The Activity Of The Concrete Corrosion Layer In Sewers, Xiaoyan Sun, Guangming Jiang, Philip Bond, Jurg Keller

Faculty of Engineering and Information Sciences - Papers: Part B

Sulfide induced concrete corrosion significantly reduces the service life of the sewer systems. Gaseoushydrogen sulfide (H2S) levels are a key factor affecting the corrosion rate and thesefluctuate due to thediurnalflow pattern of sewers. Currently, there is little known about how suchfluctuations, in particularthe periodic deprivation of H2S, may affect the corrosion activity. This study investigated the impact ofthe deprivation of H2S on the sulfide uptake rate (SUR) of concrete coupons incubated in laboratorycorrosion chambers. After systematic evaluation of the gaseous H2S concentration profiles of two sewersystems, two types of profiles, i.e. short- (1 h) and long- (12 h) term deprivation …


The Rapid Chemically Induced Corrosion Of Concrete Sewers At High H2s Concentration, Xuan Li, Liza O'Moore, Yarong Song, Philp Bond, Zhiguo Yuan, Simeon Wilkie, Lucija Hanzic, Guangming Jiang Jan 2019

The Rapid Chemically Induced Corrosion Of Concrete Sewers At High H2s Concentration, Xuan Li, Liza O'Moore, Yarong Song, Philp Bond, Zhiguo Yuan, Simeon Wilkie, Lucija Hanzic, Guangming Jiang

Faculty of Engineering and Information Sciences - Papers: Part B

Concrete corrosion in sewers is primarily caused by H2S in sewer atmosphere. H2S concentration can vary from several ppm to hundreds of ppm in real sewers. Our understanding of sewer corrosion has increased dramatically in recent years, however, there is limited knowledge of the concrete corrosion at high H2S levels. This study examined the corrosion development in sewers with high H2S concentrations. Fresh concrete coupons, manufactured according to sewer pipe standards, were exposed to corrosive conditions in a pilot-scale gravity sewer system with gaseous H2S at 1100 ± 100 ppm. The corrosion process was continuously monitored by measuring the surface …


Toward Improving Ambient Volta Potential Measurements With Skpfm For Corrosion Studies, Corey M. Efaw, Thiago Da Silva, Paul H. Davis, Lan Li, Elton Graugnard, Michael F. Hurley Jan 2019

Toward Improving Ambient Volta Potential Measurements With Skpfm For Corrosion Studies, Corey M. Efaw, Thiago Da Silva, Paul H. Davis, Lan Li, Elton Graugnard, Michael F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

Scanning Kelvin probe force microscopy (SKPFM) is used in corrosion studies to quantify the relative nobility of different microstructural features present within complex metallic systems and thereby elucidate possible corrosion initiation sites. However, Volta potential differences (VPDs) measured via SKPFM in the literature for metal alloys exhibit large variability, making interpretation and application for corrosion studies difficult. We have developed an improved method for referencing SKPFM VPDs by quantifying the closely related work function of the probe relative to an inert gold standard whose modified work function is calculated via density functional theory (DFT). By measuring and tracking changes in …


Particle Size-Dependent Microstructure, Hardness And Electrochemical Corrosion Behavior Of Atmospheric Plasma Sprayed Nicrbsi Coatings, Peng Sang, Liang-Yu Chen, Cuihua Zhao, Ze-Xin Wang, Haiyang Wang, Sheng Lu, Dongpo Song, Jia-Huan Xu, Lai-Chang Zhang Jan 2019

Particle Size-Dependent Microstructure, Hardness And Electrochemical Corrosion Behavior Of Atmospheric Plasma Sprayed Nicrbsi Coatings, Peng Sang, Liang-Yu Chen, Cuihua Zhao, Ze-Xin Wang, Haiyang Wang, Sheng Lu, Dongpo Song, Jia-Huan Xu, Lai-Chang Zhang

Research outputs 2014 to 2021

Particle size is a critical consideration for many powder coating-related industries since it significantly influences the properties of the produced materials. However, the effect of particle size on the characteristics of plasma sprayed NiCrBSi coatings is not well understood. This work investigates the microstructures, hardness and electrochemical corrosion behavior of plasma sprayed NiCrBSi coatings synthesized using different-sized powders. All coatings mainly consist of Ni, N3B, CrB, Cr7C3 and Cr3C2 phases. The coatings produced by small particles (50–75 μm) exhibit lower porosity (2.0 ± 0.8%). Such coatings show a higher fraction (15.5 vol.%) of the amorphous phase and lower hardness (700 …


Ductile Corrosion-Free Self-Centering Concrete Elements, Maged Youssef, Mohamed E. Meshaly, Ahmed Elansary Jan 2019

Ductile Corrosion-Free Self-Centering Concrete Elements, Maged Youssef, Mohamed E. Meshaly, Ahmed Elansary

Civil and Environmental Engineering Publications

Corrosion is a major factor in the deterioration of reinforced concrete (RC) structures. To mitigate this problem, steel bars can be replaced with glass-fiber-reinforced-polymer (GFRP) bars. However, the lack of ductility of GFRP-RC elements has prevented their use in many structural applications, especially in seismic areas. Superelastic shape memory alloy (SMA) bars have been proposed to be used in seismic areas because of their self-centering characteristics. Also, they have the added advantage of being corrosion resistant. This paper examines the combined use of SMA and GFRP bars to achieve ductile self-centering and corrosion-free elements. The first challenge for such a …


Flexural Behaviour Of Superelastic Shape Memory Alloy Reinforced Concrete Beams During Loading And Unloading Stages, Yamen Ibrahim Elbahy, Maged Youssef Jan 2019

Flexural Behaviour Of Superelastic Shape Memory Alloy Reinforced Concrete Beams During Loading And Unloading Stages, Yamen Ibrahim Elbahy, Maged Youssef

Civil and Environmental Engineering Publications

Trend of using smart structures, which can adjust when exposed to severe unexpected loading, is increasing. One of the methods to achieve such structures relies on smart materials. For example, replacing conventional steel reinforcing bars in Reinforced Concrete (RC) structures with superelastic Shape Memory Alloy (SMA) bars significantly reduces the residual deformations caused by post-yielding behaviour. This paper provides in-depth understanding of the flexural behaviour of SMA RC beams. A sectional analysis method, which predicts the flexural behaviour of SMA RC beams during both loading and unloading stages, is adopted and validated using available experimental data. An extensive parametric study …


The Effect Of Flinak Molten Salt Corrosion On The Hardness Of Hastelloy N, David Kok Jan 2019

The Effect Of Flinak Molten Salt Corrosion On The Hardness Of Hastelloy N, David Kok

Honors Program Projects

The desire to reduce pollution caused by electricity production has led to a call for the replacement of conventional fossil fuel power plants. In order to fulfill this goal, a large amount of new nuclear reactors is required, and this provides the opportunity to put new and innovative reactor designs into production. The Molten Salt Reactor (MSR) is one of the most promising concepts, but a suitable combination of molten salt and container material needs to be found to reduce the potential for corrosion before the concept can be put into production. FLiNaK molten salt and the nickel-based alloy Hastelloy …


Calculation Of Oxygen Diffusion Coefficients In Oxide Films Formed On Low-Temperature Annealed Zr Alloys And Their Related Corrosion Behavior, Lina Zhang, Liang-Yu Chen, Cuihua Zhao, Yujing Liu, Lai-Chang Zhang Jan 2019

Calculation Of Oxygen Diffusion Coefficients In Oxide Films Formed On Low-Temperature Annealed Zr Alloys And Their Related Corrosion Behavior, Lina Zhang, Liang-Yu Chen, Cuihua Zhao, Yujing Liu, Lai-Chang Zhang

Research outputs 2014 to 2021

The growth of oxide film, which results from the inward oxygen diffusion from a corrosive environment, is a critical consideration for the corrosion resistance of zirconium alloys. This work calculates the oxygen diffusion coefficients in the oxide films formed on zirconium alloys annealed at 400~500 °C and investigates the related corrosion behavior. The annealed samples have a close size for the second-phase particles but a distinctive hardness, indicating the difference in substrate conditions. The weight gain of all samples highly follows parabolic laws. The weight gain of the sample annealed at 400 °C has the fastest increase rate at the …