Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

PDF

Computer Engineering

Institution
Keyword
Publication

Articles 331 - 353 of 353

Full-Text Articles in Engineering

Investigation Into The Perceptually Informed Data For Environmental Sound Recognition, Chenglin Kang Jan 2019

Investigation Into The Perceptually Informed Data For Environmental Sound Recognition, Chenglin Kang

Dissertations

Environmental sound is rich source of information that can be used to infer contexts. With the rise in ubiquitous computing, the desire of environmental sound recognition is rapidly growing. Primarily, the research aims to recognize the environmental sound using the perceptually informed data. The initial study is concentrated on understanding the current state-of-the-art techniques in environmental sound recognition. Then those researches are evaluated by a critical review of the literature. This study extracts three sets of features: Mel Frequency Cepstral Coefficients, Mel-spectrogram and sound texture statistics. Two kinds machine learning algorithms are cooperated with appropriate sound features. The models are ...


Predicting Violent Crime Reports From Geospatial And Temporal Attributes Of Us 911 Emergency Call Data, Vincent Corcoran Jan 2019

Predicting Violent Crime Reports From Geospatial And Temporal Attributes Of Us 911 Emergency Call Data, Vincent Corcoran

Dissertations

The aim of this study is to create a model to predict which 911 calls will result in crime reports of a violent nature. Such a prediction model could be used by the police to prioritise calls which are most likely to lead to violent crime reports. The model will use geospatial and temporal attributes of the call to predict whether a crime report will be generated. To create this model, a dataset of characteristics relating to the neighbourhood where the 911 call originated will be created and combined with characteristics related to the time of the 911 call. Geospatial ...


Noise Reduction In Eeg Signals Using Convolutional Autoencoding Techniques, Conor Hanrahan Jan 2019

Noise Reduction In Eeg Signals Using Convolutional Autoencoding Techniques, Conor Hanrahan

Dissertations

The presence of noise in electroencephalography (EEG) signals can significantly reduce the accuracy of the analysis of the signal. This study assesses to what extent stacked autoencoders designed using one-dimensional convolutional neural network layers can reduce noise in EEG signals. The EEG signals, obtained from 81 people, were processed by a two-layer one-dimensional convolutional autoencoder (CAE), whom performed 3 independent button pressing tasks. The signal-to-noise ratios (SNRs) of the signals before and after processing were calculated and the distributions of the SNRs were compared. The performance of the model was compared to noise reduction performance of Principal Component Analysis, with ...


Multi-Sensory Deep Learning Architectures For Slam Dunk Scene Classification, Paul Minogue Jan 2019

Multi-Sensory Deep Learning Architectures For Slam Dunk Scene Classification, Paul Minogue

Dissertations

Basketball teams at all levels of the game invest a considerable amount of time and effort into collecting, segmenting, and analysing footage from their upcoming opponents previous games. This analysis helps teams identify and exploit the potential weaknesses of their opponents and is commonly cited as one of the key elements required to achieve success in the modern game. The growing importance of this type of analysis has prompted research into the application of computer vision and audio classification techniques to help teams classify scoring sequences and key events using game footage. However, this research tends to focus on classifying ...


Performance Comparison Of Hybrid Cnn-Svm And Cnn-Xgboost Models In Concrete Crack Detection, Sahana Thiyagarajan Jan 2019

Performance Comparison Of Hybrid Cnn-Svm And Cnn-Xgboost Models In Concrete Crack Detection, Sahana Thiyagarajan

Dissertations

Detection of cracks mainly has been a sort of essential step in visual inspection involved in construction engineering as it is the commonly used building material and cracks in them is an early sign of de-basement. It is hard to find cracks by a visual check for the massive structures. So, the development of crack detecting systems generally has been a critical issue. The utilization of contextual image processing in crack detection is constrained, as image data usually taken under real-world situations vary widely and also includes the complex modelling of cracks and the extraction of handcrafted features. Therefore the ...


Enhancing Partially Labelled Data: Self Learning And Word Vectors In Natural Language Processing, Eamon Mcentee Jan 2019

Enhancing Partially Labelled Data: Self Learning And Word Vectors In Natural Language Processing, Eamon Mcentee

Dissertations

There has been an explosion in unstructured text data in recent years with services like Twitter, Facebook and WhatsApp helping drive this growth. Many of these companies are facing pressure to monitor the content on their platforms and as such Natural Language Processing (NLP) techniques are more important than ever. There are many applications of NLP ranging from spam filtering, sentiment analysis of social media, automatic text summarisation and document classification.


Human Action Recognition In Videos Using Transfer Learning, Kaiqiang Huang, Sarah Jane Delany, Susan Mckeever Jan 2019

Human Action Recognition In Videos Using Transfer Learning, Kaiqiang Huang, Sarah Jane Delany, Susan Mckeever

Session 1: Active Vision, Tracking, Motion Analysis

A variety of systems focus on detecting the actions and activities performed by humans, such as video surveillance and health monitoring systems. However, published labelled human action datasets for training supervised machine learning models are limited in number and expensive to produce. The use of transfer learning for the task of action recognition can help to address this issue by transferring or re-using the knowledge of existing trained models, in combination with minimal training data from the new target domain. Our focus in this paper is an investigation of video feature representations and machine learning algorithms for transfer learning for ...


Solid Spherical Energy (Sse) Cnns For Efficient 3d Medical Image Analysis, Vincent Andrearczyk, Valentin Oreiller, Julien Fageot, Xavier Montet, Adrien Depeursinge Jan 2019

Solid Spherical Energy (Sse) Cnns For Efficient 3d Medical Image Analysis, Vincent Andrearczyk, Valentin Oreiller, Julien Fageot, Xavier Montet, Adrien Depeursinge

Session 2: Deep Learning for Computer Vision

Invariance to local rotation, to differentiate from the global rotation of images and objects, is required in various texture analysis problems. It has led to several breakthrough methods such as local binary patterns, maximum response and steerable filterbanks. In particular, textures in medical images often exhibit local structures at arbitrary orientations. Locally Rotation Invariant (LRI) Convolutional Neural Networks (CNN) were recently proposed using 3D steerable filters to combine LRI with Directional Sensitivity (DS). The steerability avoids the expensive cost of convolutions with rotated kernels and comes with a parametric representation that results in a drastic reduction of the number of ...


Micro Expression Classification Accuracy Assessment, Pratikshya Sharma, Sonya Coleman, Pratheepan Yogarajah, Laurenc Taggart Jan 2019

Micro Expression Classification Accuracy Assessment, Pratikshya Sharma, Sonya Coleman, Pratheepan Yogarajah, Laurenc Taggart

Session 1: Active Vision, Tracking, Motion Analysis

The ability to identify and draw appropriate implications from non-verbal cues is a challenging task in facial expression recognition and has been investigated by various disciplines particularly social science, medical science, psychology and technological sciences beyond three decades. Non-verbal cues often last a few seconds and are obvious (macro) whereas others are very short and difficult to interpret (micro). This research is based on the area of micro expression recognition with the main focus laid on understanding and exploring the combined effect of various existing feature extraction techniques and one of the most renowned machine learning algorithms identified as Support ...


Expressing Trust With Temporal Frequency Of User Interaction In Online Communities, Ekaterina Yashkina, Arseny Pinigin, Jooyoung Lee, Manuel Mazzara, Akinlolu Solomon Adekotujo, Adam Zubair, Luca Longo Jan 2019

Expressing Trust With Temporal Frequency Of User Interaction In Online Communities, Ekaterina Yashkina, Arseny Pinigin, Jooyoung Lee, Manuel Mazzara, Akinlolu Solomon Adekotujo, Adam Zubair, Luca Longo

Conference papers

Reputation systems concern soft security dynamics in diverse areas. Trust dynamics in a reputation system should be stable and adaptable at the same time to serve the purpose. Many reputation mechanisms have been proposed and tested over time. However, the main drawback of reputation management is that users need to share private information to gain trust in a system such as phone numbers, reviews, and ratings. Recently, a novel model that tries to overcome this issue was presented: the Dynamic Interaction-based Reputation Model (DIBRM). This approach to trust considers only implicit information automatically deduced from the interactions of users within ...


Ieee Access Special Section Editorial: Wirelessly Powered Networks, And Technologies, Theofanis P. Raptis, Nuno B. Carvalho, Diego Masotti, Lei Shu, Cong Wang, Yuanyuan Yang Jan 2019

Ieee Access Special Section Editorial: Wirelessly Powered Networks, And Technologies, Theofanis P. Raptis, Nuno B. Carvalho, Diego Masotti, Lei Shu, Cong Wang, Yuanyuan Yang

Computer Science Faculty Publications

Wireless Power Transfer (WPT) is, by definition, a process that occurs in any system where electrical energy is transmitted from a power source to a load without the connection of electrical conductors. WPT is the driving technology that will enable the next stage in the current consumer electronics revolution, including battery-less sensors, passive RF identification (RFID), passive wireless sensors, the Internet of Things and 5G, and machine-to-machine solutions. WPT-enabled devices can be powered by harvesting energy from the surroundings, including electromagnetic (EM) energy, leading to a new communication networks paradigm, the Wirelessly Powered Networks.


Sec-Lib: Protecting Scholarly Digital Libraries From Infected Papers Using Active Machine Learning Framework, Nir Nissim, Aviad Cohen, Jian Wu, Andrea Lanzi, Lior Rokach, Yuval Elovici, Lee Giles Jan 2019

Sec-Lib: Protecting Scholarly Digital Libraries From Infected Papers Using Active Machine Learning Framework, Nir Nissim, Aviad Cohen, Jian Wu, Andrea Lanzi, Lior Rokach, Yuval Elovici, Lee Giles

Computer Science Faculty Publications

Researchers from academia and the corporate-sector rely on scholarly digital libraries to access articles. Attackers take advantage of innocent users who consider the articles' files safe and thus open PDF-files with little concern. In addition, researchers consider scholarly libraries a reliable, trusted, and untainted corpus of papers. For these reasons, scholarly digital libraries are an attractive-target and inadvertently support the proliferation of cyber-attacks launched via malicious PDF-files. In this study, we present related vulnerabilities and malware distribution approaches that exploit the vulnerabilities of scholarly digital libraries. We evaluated over two-million scholarly papers in the CiteSeerX library and found the library ...


No-Reference Image Denoising Quality Assessment, Si Lu Jan 2019

No-Reference Image Denoising Quality Assessment, Si Lu

Computer Science Faculty Publications and Presentations

A wide variety of image denoising methods are available now. However, the performance of a denoising algorithm often depends on individual input noisy images as well as its parameter setting. In this paper, we present a noreference image denoising quality assessment method that can be used to select for an input noisy image the right denoising algorithm with the optimal parameter setting. This is a challenging task as no ground truth is available. This paper presents a data-driven approach to learn to predict image denoising quality. Our method is based on the observation that while individual existing quality metrics and ...


Exploring Age-Related Metamemory Differences Using Modified Brier Scores And Hierarchical Clustering, Chelsea Parlett-Pelleriti, Grace C. Lin, Masha R. Jones, Erik Linstead, Susanne M. Jaeggi Jan 2019

Exploring Age-Related Metamemory Differences Using Modified Brier Scores And Hierarchical Clustering, Chelsea Parlett-Pelleriti, Grace C. Lin, Masha R. Jones, Erik Linstead, Susanne M. Jaeggi

Engineering Faculty Articles and Research

Older adults (OAs) typically experience memory failures as they age. However, with some exceptions, studies of OAs’ ability to assess their own memory functions—Metamemory (MM)— find little evidence that this function is susceptible to age-related decline. Our study examines OAs’ and young adults’ (YAs) MM performance and strategy use. Groups of YAs (N = 138) and OAs (N = 79) performed a MM task that required participants to place bets on how likely they were to remember words in a list. Our analytical approach includes hierarchical clustering, and we introduce a new measure of MM—the modified Brier—in order to ...


Person Re-Identification Over Encrypted Outsourced Surveillance Videos, Hang Cheng, Huaxiong Wang, Ximeng Liu, Yan Fang, Meiqing Wang, Xiaojun Zhang Jan 2019

Person Re-Identification Over Encrypted Outsourced Surveillance Videos, Hang Cheng, Huaxiong Wang, Ximeng Liu, Yan Fang, Meiqing Wang, Xiaojun Zhang

Research Collection School Of Computing and Information Systems

Person re-identification (Re-ID) has attracted extensive attention due to its potential to identify a person of interest from different surveillance videos. With the increasing amount of the surveillance videos, high computation and storage costs have posed a great challenge for the resource-constrained users. In recent years, the cloud storage services have made a large volume of video data outsourcing become possible. However, person Re-ID over outsourced surveillance videos could lead to a security threat, i.e., the privacy leakage of the innocent person in these videos. Therefore, we propose an efFicient privAcy-preseRving peRson Re-ID Scheme (FARRIS) over outsourced surveillance videos ...


Accessibility And Decay Of Web Citations In Computer Science Journals, Mohsen Jalali Jan 2019

Accessibility And Decay Of Web Citations In Computer Science Journals, Mohsen Jalali

Library Philosophy and Practice (e-journal)

The aim of this research is to scrutiny the accessibility and decay of web citations (URLs) used in refereed articles published by 27 Computer Science open access journals as indexed by Scopus. To do this, at first, we downloaded 1000 articles of Computer Science open access journals from 2009 to 2018. After acquiring articles, their web citations are extracted and analyzed from the accessibility and decay point of view. Moreover, for initially missed web citations complementary pathways such as using Google search engine are employed. Then, data collected are analyzed using descriptive statistical methods. Research findings indicated that 80.7 ...


An Explainable Autoencoder For Collaborative Filtering Recommendation, Pegah Sagheb Haghighi, Olurotimi Seton, Olfa Nasraoui Jan 2019

An Explainable Autoencoder For Collaborative Filtering Recommendation, Pegah Sagheb Haghighi, Olurotimi Seton, Olfa Nasraoui

Faculty Scholarship

Autoencoders are a common building block of Deep Learning architectures, where they are mainly used for representation learning. They have also been successfully used in Collaborative Filtering (CF) recommender systems to predict missing ratings. Unfortunately, like all black box machine learning models, they are unable to explain their outputs. Hence, while predictions from an Autoencoderbased recommender system might be accurate, it might not be clear to the user why a recommendation was generated. In this work, we design an explainable recommendation system using an Autoencoder model whose predictions can be explained using the neighborhood based explanation style. Our preliminary work ...


Sdn Testbed For Evaluation Of Large Exo-Atmospheric Emp Attacks, Diogo Oliveira, Nasir Ghani, Majeed M. Hayat, Jorge Crichigno, Elias Bou-Harb Jan 2019

Sdn Testbed For Evaluation Of Large Exo-Atmospheric Emp Attacks, Diogo Oliveira, Nasir Ghani, Majeed M. Hayat, Jorge Crichigno, Elias Bou-Harb

Electrical and Computer Engineering Faculty Research and Publications

Large-scale nuclear electromagnetic pulse (EMP) attacks and natural disasters can cause extensive network failures across wide geographic regions. Although operational networks are designed to handle most single or dual faults, recent efforts have also focused on more capable multi-failure disaster recovery schemes. Concurrently, advances in software-defined networking (SDN) technologies have delivered highly-adaptable frameworks for implementing new and improved service provisioning and recovery paradigms in real-world settings. Hence this study leverages these new innovations to develop a robust disaster recovery (counter-EMP) framework for large backbone networks. Detailed findings from an experimental testbed study are also presented.


Microscale Direct Measurement Of Localized Photothermal Heating In Tissue-Mimetic Hydrogels, Benyamin Davaji, James E. Richie, Chung-Hoon Lee Jan 2019

Microscale Direct Measurement Of Localized Photothermal Heating In Tissue-Mimetic Hydrogels, Benyamin Davaji, James E. Richie, Chung-Hoon Lee

Electrical and Computer Engineering Faculty Research and Publications

Photothermal hyperthermia is proven to be an effective diagnostic tool for cancer therapy. The efficacy of this method directly relies on understanding the localization of the photothermal effect in the targeted region. Realizing the safe and effective concentration of nano-particles and the irradiation intensity and time requires spatiotemporal temperature monitoring during and after laser irradiation. Due to uniformities of the nanoparticle distribution and the complexities of the microenvironment, a direct temperature measurement in micro-scale is crucial for achieving precise thermal dose control. In this study, a 50 nm thin film nickel resistive temperature sensor was fabricated on a 300 nm ...


Age Grading An. Gambiae And An. Arabiensis Using Near Infrared Spectra And Artificial Neural Networks, Masabho Peter Milali, Maggy T. Sikulu-Lord, Samson S. Kiware, Floyd E. Dowell, George F. Corliss, Richard J. Povinelli Jan 2019

Age Grading An. Gambiae And An. Arabiensis Using Near Infrared Spectra And Artificial Neural Networks, Masabho Peter Milali, Maggy T. Sikulu-Lord, Samson S. Kiware, Floyd E. Dowell, George F. Corliss, Richard J. Povinelli

Electrical and Computer Engineering Faculty Research and Publications

Background

Near infrared spectroscopy (NIRS) is currently complementing techniques to age-grade mosquitoes. NIRS classifies lab-reared and semi-field raised mosquitoes into < or ≥ 7 days old with an average accuracy of 80%, achieved by training a regression model using partial least squares (PLS) and interpreted as a binary classifier.

Methods and findings

We explore whether using an artificial neural network (ANN) analysis instead of PLS regression improves the current accuracy of NIRS models for age-grading malaria transmitting mosquitoes. We also explore if directly training a binary classifier instead of training a regression model and interpreting it as a binary classifier improves the accuracy. A total of 786 and 870 NIR spectra collected from laboratory reared An. gambiae and An. arabiensis, respectively, were used and pre-processed according to previously published ...


Effective Plant Discrimination Based On The Combination Of Local Binary Pattern Operators And Multiclass Support Vector Machine Methods, Vi N T Le, Beniamin Apopei, Kamal Alameh Jan 2019

Effective Plant Discrimination Based On The Combination Of Local Binary Pattern Operators And Multiclass Support Vector Machine Methods, Vi N T Le, Beniamin Apopei, Kamal Alameh

ECU Publications Post 2013

Accurate crop and weed discrimination plays a critical role in addressing the challenges of weed management in agriculture. The use of herbicides is currently the most common approach to weed control. However, herbicide resistant plants have long been recognised as a major concern due to the excessive use of herbicides. Effective weed detection techniques can reduce the cost of weed management and improve crop quality and yield. A computationally efficient and robust plant classification algorithm is developed and applied to the classification of three crops: Brassica napus (canola), Zea mays (maize/corn), and radish. The developed algorithm is based on ...


Real-Time Classification Of Multivariate Olfaction Data Using Spiking Neural Networks, Arnup Vanarse, Adam Osseiran, Alexander Rassau, Therese O'Sullivan, Jonny Lo, Amanda Devine Jan 2019

Real-Time Classification Of Multivariate Olfaction Data Using Spiking Neural Networks, Arnup Vanarse, Adam Osseiran, Alexander Rassau, Therese O'Sullivan, Jonny Lo, Amanda Devine

ECU Publications Post 2013

Recent studies in bioinspired artificial olfaction, especially those detailing the application of spike-based neuromorphic methods, have led to promising developments towards overcoming the limitations of traditional approaches, such as complexity in handling multivariate data, computational and power requirements, poor accuracy, and substantial delay for processing and classification of odors. Rank-order-based olfactory systems provide an interesting approach for detection of target gases by encoding multi-variate data generated by artificial olfactory systems into temporal signatures. However, the utilization of traditional pattern-matching methods and unpredictable shuffling of spikes in the rank-order impedes the performance of the system. In this paper, we present an ...


A Hardware-Deployable Neuromorphic Solution For Encoding And Classification Of Electronic Nose Data, Anup Vanarse, Alexander Rassau, Peter Van Der Made Jan 2019

A Hardware-Deployable Neuromorphic Solution For Encoding And Classification Of Electronic Nose Data, Anup Vanarse, Alexander Rassau, Peter Van Der Made

ECU Publications Post 2013

In several application domains, electronic nose systems employing conventional data processing approaches incur substantial power and computational costs and limitations, such as significant latency and poor accuracy for classification. Recent developments in spike-based bio-inspired approaches have delivered solutions for the highly accurate classification of multivariate sensor data with minimized computational and power requirements. Although these methods have addressed issues related to efficient data processing and classification accuracy, other areas, such as reducing the processing latency to support real-time application and deploying spike-based solutions on supported hardware, have yet to be studied in detail. Through this investigation, we proposed a spiking ...