Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Twitter And Disasters: A Social Resilience Fingerprint, Benjamin A. Rachunok, Jackson B. Bennett, Roshanak Nateghi May 2019

Twitter And Disasters: A Social Resilience Fingerprint, Benjamin A. Rachunok, Jackson B. Bennett, Roshanak Nateghi

Purdue University Libraries Open Access Publishing Support Fund

Understanding the resilience of a community facing a crisis event is critical to improving its adaptive capacity. Community resilience has been conceptualized as a function of the resilience of components of a community such as ecological, infrastructure, economic, and social systems, etc. In this paper, we introduce the concept of a “resilience fingerprint” and propose a multi-dimensional method for analyzing components of community resilience by leveraging existing definitions of community resilience with data from the social network Twitter. Twitter data from 14 events are analyzed and their resulting resilience fingerprints computed. We compare the fingerprints between events and show that ...


Identifying Key Topics Bearing Negative Sentiment On Twitter: Insights Concerning The 2015-2016 Zika Epidemic, Ravali Mamidi, Michele Miller, Tanvi Banerjee, William Romine, Amit Sheth Jan 2019

Identifying Key Topics Bearing Negative Sentiment On Twitter: Insights Concerning The 2015-2016 Zika Epidemic, Ravali Mamidi, Michele Miller, Tanvi Banerjee, William Romine, Amit Sheth

Publications

Background To understand the public sentiment regarding the Zika virus, social media can be leveraged to understand how positive, negative, and neutral sentiments are expressed in society. Specifically, understanding the characteristics of negative sentiment could help inform federal disease control agencies’ efforts to disseminate relevant information to the public about Zika-related issues.

Objective The purpose of this study was to analyze the public sentiment concerning Zika using posts on Twitter and determine the qualitative characteristics of positive, negative, and neutral sentiments expressed.

Methods Machine learning techniques and algorithms were used to analyze the sentiment of tweets concerning Zika. A supervised ...


Is There A Correlation Between Wikidata Revisions And Trending Hashtags On Twitter?, Paula Dooley [Thesis] Jan 2019

Is There A Correlation Between Wikidata Revisions And Trending Hashtags On Twitter?, Paula Dooley [Thesis]

Dissertations

Twitter is a microblogging application used by its members to interact and stay socially connected by sharing instant messages called tweets that are up to 280 characters long. Within these tweets, users can add hashtags to relate the message to a topic that is shared among users. Wikidata is a central knowledge base of information relying on its members and machines bots to keeping its content up to date. The data is stored in a highly structured format with the added SPARQL protocol and RDF Query Language (SPARQL) endpoint to allow users to query its knowledge base.


Enhancing Partially Labelled Data: Self Learning And Word Vectors In Natural Language Processing, Eamon Mcentee Jan 2019

Enhancing Partially Labelled Data: Self Learning And Word Vectors In Natural Language Processing, Eamon Mcentee

Dissertations

There has been an explosion in unstructured text data in recent years with services like Twitter, Facebook and WhatsApp helping drive this growth. Many of these companies are facing pressure to monitor the content on their platforms and as such Natural Language Processing (NLP) techniques are more important than ever. There are many applications of NLP ranging from spam filtering, sentiment analysis of social media, automatic text summarisation and document classification.