Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Using Machine Learning Classification Methods To Detect The Presence Of Heart Disease, Nestor Pereira Dec 2019

Using Machine Learning Classification Methods To Detect The Presence Of Heart Disease, Nestor Pereira

Dissertations

Cardiovascular disease (CVD) is the most common cause of death in Ireland, and probably, worldwide. According to the Health Service Executive (HSE) cardiovascular disease accounting for 36% of all deaths, and one important fact, 22% of premature deaths (under age 65) are from CVD.

Using data from the Heart Disease UCI Data Set (UCI Machine Learning), we use machine learning techniques to detect the presence or absence of heart disease in the patient according to 14 features provide for this dataset. The different results are compared based on accuracy performance, confusion matrix and area under the Receiver Operating Characteristics (ROC ...


Factor Analysis Of Mixed Data (Famd) And Multiple Linear Regression In R, Nestor Pereira Dec 2019

Factor Analysis Of Mixed Data (Famd) And Multiple Linear Regression In R, Nestor Pereira

Dissertations

In the previous projects, it has been worked to statistically analysis of the factors to impact the score of the subjects of Mathematics and Portuguese for several groups of the student from secondary school from Portugal.

In this project will be interested in finding a model, hypothetically multiple linear regression, to predict the final score, dependent variable G3, of the student according to some features divide into two groups. One group, analyses the features or predictors which impact in the final score more related to the performance of the students, means variables like study time or past failures. The second ...


Personality Prediction Through Curriculam Vitae Analysis Involving Password Encryption And Prediction Analysis, Gagandeep Kaur, Shruti Maheshwari Nov 2019

Personality Prediction Through Curriculam Vitae Analysis Involving Password Encryption And Prediction Analysis, Gagandeep Kaur, Shruti Maheshwari

Library Philosophy and Practice (e-journal)

A recruitment process requires an eligibility check, an aptitude evaluation and a psychometric analysis of prospective candidates. The work puts forward an application where the system allows employers to post new job offerings and registered candidates can apply. The application estimates applicant’s emotional aptitude through a psychometric analysis based on a test whereas the professional standard is verified via a technical aptitude test. OCEAN Model is used to assess emotional quotient and predict the personality traits. Machine learning techniques such as Logistic Regression are used for modelling the personality predictor. The details of the candidates are kept secure by ...


Bibliometric Survey On Incremental Clustering Algorithms, Archana Chaudhari, Rahul Raghvendra Joshi, Preeti Mulay, Ketan Kotecha, Parag Kulkarni Sep 2019

Bibliometric Survey On Incremental Clustering Algorithms, Archana Chaudhari, Rahul Raghvendra Joshi, Preeti Mulay, Ketan Kotecha, Parag Kulkarni

Library Philosophy and Practice (e-journal)

For clustering accuracy, on influx of data, the parameter-free incremental clustering research is essential. The sole purpose of this bibliometric analysis is to understand the reach and utility of incremental clustering algorithms. This paper shows incremental clustering for time series dataset was first explored in 2000 and continued thereafter till date. This Bibliometric analysis is done using Scopus, Google Scholar, Research Gate, and the tools like Gephi, Table2Net, and GPS Visualizer etc. The survey revealed that maximum publications of incremental clustering algorithms are from conference and journals, affiliated to Computer Science, Chinese lead publications followed by India then United States ...


Combining Virtual Reality And Machine Learning For Enhancing The Resiliency Of Transportation Infrastructure In Extreme Events, Supratik Mukhopadhyay, Yimin Zhu, Ravindra Gudishala Sep 2019

Combining Virtual Reality And Machine Learning For Enhancing The Resiliency Of Transportation Infrastructure In Extreme Events, Supratik Mukhopadhyay, Yimin Zhu, Ravindra Gudishala

Publications

Traffic management models that include route choice form the basis of traffic management systems. High-fidelity models that are based on rapidly evolving contextual conditions can have significant impact on smart and energy efficient transportation. Existing traffic/route choice models are generic and are calibrated on static contextual conditions. These models do not consider dynamic contextual conditions such as the location, failure of certain portions of the road network, the social network structure of population inhabiting the region, route choices made by other drivers, extreme conditions, etc. As a result, the model’s predictions are made at an aggregate level and ...


Non-Intrusive Affective Assessment In The Circumplex Model From Pupil Diameter And Facial Expression Monitoring, Sudarat Tangnimitchok Jun 2019

Non-Intrusive Affective Assessment In The Circumplex Model From Pupil Diameter And Facial Expression Monitoring, Sudarat Tangnimitchok

FIU Electronic Theses and Dissertations

Automatic methods for affective assessment seek to enable computer systems to recognize the affective state of their users. This dissertation proposes a system that uses non-intrusive measurements of the user’s pupil diameter and facial expression to characterize his /her affective state in the Circumplex Model of Affect. This affective characterization is achieved by estimating the affective arousal and valence of the user’s affective state.

In the proposed system the pupil diameter signal is obtained from a desktop eye gaze tracker, while the face expression components, called Facial Animation Parameters (FAPs) are obtained from a Microsoft Kinect module, which ...


Predicting Customer Retention Of An App-Based Business Using Supervised Machine Learning, Jeswin Jose Jan 2019

Predicting Customer Retention Of An App-Based Business Using Supervised Machine Learning, Jeswin Jose

Dissertations

Identification of retainable customers is very essential for the functioning and growth of any business. An effective identification of retainable customers can help the business to identify the reasons of retention and plan their marketing strategies accordingly. This research is aimed at developing a machine learning model that can precisely predict the retainable customers from the total customer data of an e-learning business. Building predictive models that can efficiently classify imbalanced data is a major challenge in data mining and machine learning. Most of the machine learning algorithms deliver a suboptimal performance when introduced to an imbalanced dataset. A variety ...


An Investigation Of Three Subjective Rating Scales Of Mental Workload In Third Level Education, Nha Vu Thanh Nguyen Jan 2019

An Investigation Of Three Subjective Rating Scales Of Mental Workload In Third Level Education, Nha Vu Thanh Nguyen

Dissertations

Mental Workload assessment in educational settings is still recognized as an open research problem. Although its application is useful for instructional design, it is still unclear how it can be formally shaped and which factors compose it. This paper is aimed at investigating a set of features believed to shape the construct of mental workload and aggregating them together in models trained with supervised machine learning techniques. In detail, multiple linear regression and decision trees have been chosen for training models with features extracted respectively from the NASA Task Load Index and the Workload Profile, well-known self-reporting instruments for assessing ...


Predicting Violent Crime Reports From Geospatial And Temporal Attributes Of Us 911 Emergency Call Data, Vincent Corcoran Jan 2019

Predicting Violent Crime Reports From Geospatial And Temporal Attributes Of Us 911 Emergency Call Data, Vincent Corcoran

Dissertations

The aim of this study is to create a model to predict which 911 calls will result in crime reports of a violent nature. Such a prediction model could be used by the police to prioritise calls which are most likely to lead to violent crime reports. The model will use geospatial and temporal attributes of the call to predict whether a crime report will be generated. To create this model, a dataset of characteristics relating to the neighbourhood where the 911 call originated will be created and combined with characteristics related to the time of the 911 call. Geospatial ...


Performance Comparison Of Hybrid Cnn-Svm And Cnn-Xgboost Models In Concrete Crack Detection, Sahana Thiyagarajan Jan 2019

Performance Comparison Of Hybrid Cnn-Svm And Cnn-Xgboost Models In Concrete Crack Detection, Sahana Thiyagarajan

Dissertations

Detection of cracks mainly has been a sort of essential step in visual inspection involved in construction engineering as it is the commonly used building material and cracks in them is an early sign of de-basement. It is hard to find cracks by a visual check for the massive structures. So, the development of crack detecting systems generally has been a critical issue. The utilization of contextual image processing in crack detection is constrained, as image data usually taken under real-world situations vary widely and also includes the complex modelling of cracks and the extraction of handcrafted features. Therefore the ...


Exploring Age-Related Metamemory Differences Using Modified Brier Scores And Hierarchical Clustering, Chelsea Parlett-Pelleriti, Grace C. Lin, Masha R. Jones, Erik Linstead, Susanne M. Jaeggi Jan 2019

Exploring Age-Related Metamemory Differences Using Modified Brier Scores And Hierarchical Clustering, Chelsea Parlett-Pelleriti, Grace C. Lin, Masha R. Jones, Erik Linstead, Susanne M. Jaeggi

Engineering Faculty Articles and Research

Older adults (OAs) typically experience memory failures as they age. However, with some exceptions, studies of OAs’ ability to assess their own memory functions—Metamemory (MM)— find little evidence that this function is susceptible to age-related decline. Our study examines OAs’ and young adults’ (YAs) MM performance and strategy use. Groups of YAs (N = 138) and OAs (N = 79) performed a MM task that required participants to place bets on how likely they were to remember words in a list. Our analytical approach includes hierarchical clustering, and we introduce a new measure of MM—the modified Brier—in order to ...