Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Amodal Instance Segmentation And Multi-Object Tracking With Deep Pixel Embedding, Yanfeng Liu Dec 2019

Amodal Instance Segmentation And Multi-Object Tracking With Deep Pixel Embedding, Yanfeng Liu

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

This thesis extends upon the representational output of semantic instance segmentation by explicitly including both visible and occluded parts. A fully convolutional network is trained to produce consistent pixel-level embedding across two layers such that, when clustered, the results convey the full spatial extent and depth ordering of each instance. Results demonstrate that the network can accurately estimate complete masks in the presence of occlusion and outperform leading top-down bounding-box approaches.

The model is further extended to produce consistent pixel-level embeddings across two consecutive image frames from a video to simultaneously perform amodal instance segmentation and multi-object tracking. No post-processing ...


Self-Driving Toy Car Using Deep Learning, Fahim Ahmed, Suleyman Turac, Mubtasem Ali Dec 2019

Self-Driving Toy Car Using Deep Learning, Fahim Ahmed, Suleyman Turac, Mubtasem Ali

Publications and Research

Our research focuses on building a student affordable platform for scale model self-driving cars. The goal of this project is to explore current developments of Open Source hardware and software to build a low-cost platform consisting of the car chassis/framework, sensors, and software for the autopilot. Our research will allow other students with low budget to enter into the world of Deep Learning, self-driving cars, and autonomous cars racing competitions.


Identifying Regional Trends In Avatar Customization, Peter Mawhorter, Sercan Sengun, Haewoon Kwak, D. Fox Harrell Dec 2019

Identifying Regional Trends In Avatar Customization, Peter Mawhorter, Sercan Sengun, Haewoon Kwak, D. Fox Harrell

Research Collection School Of Computing and Information Systems

Since virtual identities such as social media profiles and avatars have become a common venue for self-expression, it has become important to consider the ways in which existing systems embed the values of their designers. In order to design virtual identity systems that reflect the needs and preferences of diverse users, understanding how the virtual identity construction differs between groups is important. This paper presents a new methodology that leverages deep learning and differential clustering for comparative analysis of profile images, with a case study of almost 100 000 avatars from a large online community using a popular avatar creation ...


Seer: An Explainable Deep Learning Midi-Based Hybrid Song Recommender System, Khalil Damak, Olfa Nasraoui Dec 2019

Seer: An Explainable Deep Learning Midi-Based Hybrid Song Recommender System, Khalil Damak, Olfa Nasraoui

Faculty Scholarship

State of the art music recommender systems mainly rely on either matrix factorization-based collaborative filtering approaches or deep learning architectures. Deep learning models usually use metadata for content-based filtering or predict the next user interaction by learning from temporal sequences of user actions. Despite advances in deep learning for song recommendation, none has taken advantage of the sequential nature of songs by learning sequence models that are based on content. Aside from the importance of prediction accuracy, other significant aspects are important, such as explainability and solving the cold start problem. In this work, we propose a hybrid deep learning ...


Why Deep Learning Is More Efficient Than Support Vector Machines, And How It Is Related To Sparsity Techniques In Signal Processing, Laxman Bokati, Olga Kosheleva, Vladik Kreinovich Nov 2019

Why Deep Learning Is More Efficient Than Support Vector Machines, And How It Is Related To Sparsity Techniques In Signal Processing, Laxman Bokati, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

Several decades ago, traditional neural networks were the most efficient machine learning technique. Then it turned out that, in general, a different technique called support vector machines is more efficient. Reasonably recently, a new technique called deep learning has been shown to be the most efficient one. These are empirical observations, but how we explain them -- thus making the corresponding conclusions more reliable? In this paper, we provide a possible theoretical explanation for the above-described empirical comparisons. This explanation enables us to explain yet another empirical fact -- that sparsity techniques turned out to be very efficient in signal processing.


Deep Learning (Partly) Demystified, Vladik Kreinovich, Olga Kosheleva Nov 2019

Deep Learning (Partly) Demystified, Vladik Kreinovich, Olga Kosheleva

Departmental Technical Reports (CS)

Successes of deep learning are partly due to appropriate selection of activation function, pooling functions, etc. Most of these choices have been made based on empirical comparison and heuristic ideas. In this paper, we show that many of these choices -- and the surprising success of deep learning in the first place -- can be explained by reasonably simple and natural mathematics.


Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning, Ansi Zhang, Shaobo Li, Yuxin Cui, Wanli Yang, Rongzhi Dong, Jianjun Hu Aug 2019

Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning, Ansi Zhang, Shaobo Li, Yuxin Cui, Wanli Yang, Rongzhi Dong, Jianjun Hu

Faculty Publications

This paper focuses on bearing fault diagnosis with limited training data. A major challenge in fault diagnosis is the infeasibility of obtaining sufficient training samples for every fault type under all working conditions. Recently deep learning based fault diagnosis methods have achieved promising results. However, most of these methods require large amount of training data. In this study, we propose a deep neural network based few-shot learning approach for rolling bearing fault diagnosis with limited data. Our model is based on the siamese neural network, which learns by exploiting sample pairs of the same or different categories. Experimental results over ...


A Review Of Text Corpus-Based Tourism Big Data Mining, Qin Li, Shaobo Li, Sen Zhang, Jie Hu, Jianhun Hu Aug 2019

A Review Of Text Corpus-Based Tourism Big Data Mining, Qin Li, Shaobo Li, Sen Zhang, Jie Hu, Jianhun Hu

Faculty Publications

With the massive growth of the Internet, text data has become one of the main formats of tourism big data. As an effective expression means of tourists’ opinions, text mining of such data has big potential to inspire innovations for tourism practitioners. In the past decade, a variety of text mining techniques have been proposed and applied to tourism analysis to develop tourism value analysis models, build tourism recommendation systems, create tourist profiles, and make policies for supervising tourism markets. The successes of these techniques have been further boosted by the progress of natural language processing (NLP), machine learning, and ...


Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu May 2019

Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu

Faculty Publications

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available ...


Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu May 2019

Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu

Faculty Publications

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available ...


Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu May 2019

Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu

Faculty Publications

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available ...


Multi-Pig Part Detection And Association With A Fully-Convolutional Network, Eric T. Psota, Mateusz Mittek, Lance C. Pérez, Ty Schmidt, Benny Mote Jan 2019

Multi-Pig Part Detection And Association With A Fully-Convolutional Network, Eric T. Psota, Mateusz Mittek, Lance C. Pérez, Ty Schmidt, Benny Mote

Faculty Publications from the Department of Electrical and Computer Engineering

Computer vision systems have the potential to provide automated, non-invasive monitoring of livestock animals, however, the lack of public datasets with well-defined targets and evaluation metrics presents a significant challenge for researchers. Consequently, existing solutions often focus on achieving task-specific objectives using relatively small, private datasets. This work introduces a new dataset and method for instance-level detection of multiple pigs in group-housed environments. The method uses a single fully-convolutional neural network to detect the location and orientation of each animal, where both body part locations and pairwise associations are represented in the image space. Accompanying this method is a new ...


Multi-Sensory Deep Learning Architectures For Slam Dunk Scene Classification, Paul Minogue Jan 2019

Multi-Sensory Deep Learning Architectures For Slam Dunk Scene Classification, Paul Minogue

Dissertations

Basketball teams at all levels of the game invest a considerable amount of time and effort into collecting, segmenting, and analysing footage from their upcoming opponents previous games. This analysis helps teams identify and exploit the potential weaknesses of their opponents and is commonly cited as one of the key elements required to achieve success in the modern game. The growing importance of this type of analysis has prompted research into the application of computer vision and audio classification techniques to help teams classify scoring sequences and key events using game footage. However, this research tends to focus on classifying ...


An Explainable Autoencoder For Collaborative Filtering Recommendation, Pegah Sagheb Haghighi, Olurotimi Seton, Olfa Nasraoui Jan 2019

An Explainable Autoencoder For Collaborative Filtering Recommendation, Pegah Sagheb Haghighi, Olurotimi Seton, Olfa Nasraoui

Faculty Scholarship

Autoencoders are a common building block of Deep Learning architectures, where they are mainly used for representation learning. They have also been successfully used in Collaborative Filtering (CF) recommender systems to predict missing ratings. Unfortunately, like all black box machine learning models, they are unable to explain their outputs. Hence, while predictions from an Autoencoderbased recommender system might be accurate, it might not be clear to the user why a recommendation was generated. In this work, we design an explainable recommendation system using an Autoencoder model whose predictions can be explained using the neighborhood based explanation style. Our preliminary work ...