Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

PDF

Computer Engineering

CPS Model-Based Design

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Fly-By-Logic: A Tool For Unmanned Aircraft System Fleet Planning Using Temporal Logic, Yash Vardhan Pant, Rhudii A. Quaye, Houssam Abbas, Akarsh Varre, Rahul Mangharam May 2019

Fly-By-Logic: A Tool For Unmanned Aircraft System Fleet Planning Using Temporal Logic, Yash Vardhan Pant, Rhudii A. Quaye, Houssam Abbas, Akarsh Varre, Rahul Mangharam

Real-Time and Embedded Systems Lab (mLAB)

Safe planning for fleets of Unmaned Aircraft Systems (UAS) performing complex missions in urban environments has typically been a challenging problem. In the United States of America, the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) have been studying the regulation of the airspace when multiple such fleets of autonomous UAS share the same airspace, outlined in the Concept of Operations document (ConOps). While the focus is on the infrastructure and management of the airspace, the Unmanned Aircraft System (UAS) Traffic Management (UTM) ConOps also outline a potential airspace reservation based system for operation where operators ...


Synthesizing Stealthy Reprogramming Attacks On Cardiac Devices, Nicola Paoletti, Zhihao Jiang, Ariful Islam, Houssam Abbas, Rahul Mangharam, Shan Lin, Zachary Gruber, Scott A. Smolka Apr 2019

Synthesizing Stealthy Reprogramming Attacks On Cardiac Devices, Nicola Paoletti, Zhihao Jiang, Ariful Islam, Houssam Abbas, Rahul Mangharam, Shan Lin, Zachary Gruber, Scott A. Smolka

Real-Time and Embedded Systems Lab (mLAB)

An Implantable Cardioverter Defibrillator (ICD) is a medical device used for the detection of potentially fatal cardiac arrhythmias and their treatment through the delivery of electrical shocks intended to restore normal heart rhythm. An ICD reprogramming attack seeks to alter the device’s parameters to induce unnecessary therapy or prevent required therapy. In this paper, we present a formal approach for the synthesis of ICD reprogramming attacks that are both effective, i.e., lead to fundamental changes in the required therapy, and stealthy, i.e., are hard to detect. We focus on the discrimination algorithm underlying Boston Scientific devices (one ...


Temporal Logic Robustness For General Signal Classes, Houssam Abbas, Yash Vardhan Pant, Rahul Mangharam Apr 2019

Temporal Logic Robustness For General Signal Classes, Houssam Abbas, Yash Vardhan Pant, Rahul Mangharam

Real-Time and Embedded Systems Lab (mLAB)

In multi-agent systems, robots transmit their planned trajectories to each other or to a central controller, and each receiver plans its own actions by maximizing a measure of mission satisfaction. For missions expressed in temporal logic, the robustness function plays the role of satisfaction measure. Currently, a Piece-Wise Linear (PWL) or piece-wise constant reconstruction is used at the receiver. This allows an efficient robustness computation algorithm - a.k.a. monitoring - but is not adaptive to the signal class of interest, and does not leverage the compression properties of more general representations. When communication capacity is at a premium, this is ...


Technical Report: Anytime Computation And Control For Autonomous Systems, Yash Vardhan Pant, Houssam Abbas, Kartik Mohta, Rhudii A. Quaye, Truong X. Nghiem, Joseph Devietti, Rahul Mangharam Apr 2019

Technical Report: Anytime Computation And Control For Autonomous Systems, Yash Vardhan Pant, Houssam Abbas, Kartik Mohta, Rhudii A. Quaye, Truong X. Nghiem, Joseph Devietti, Rahul Mangharam

Real-Time and Embedded Systems Lab (mLAB)

The correct and timely completion of the sensing and action loop is of utmost importance in safety critical autonomous systems. A crucial part of the performance of this feedback control loop are the computation time and accuracy of the estimator which produces state estimates used by the controller. These state estimators, especially those used for localization, often use computationally expensive perception algorithms like visual object tracking. With on-board computers on autonomous robots being computationally limited, the computation time of a perception-based estimation algorithm can at times be high enough to result in poor control performance. In this work, we develop ...