Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Design Of Personnel Big Data Management System Based On Blockchain, Houbing Song, Jian Chen, Zhihan Lv Jul 2019

Design Of Personnel Big Data Management System Based On Blockchain, Houbing Song, Jian Chen, Zhihan Lv

Publications

With the continuous development of information technology, enterprises, universities and governments are constantly stepping up the construction of electronic personnel information management system. The information of hundreds of thousands or even millions of people’s information are collected and stored into the system. So much information provides the cornerstone for the development of big data, if such data is tampered with or leaked, it will cause irreparable serious damage. However, in recent years, electronic archives have exposed a series of problems such as information leakage, information tampering, and information loss, which has made the reform of personnel information management more ...


Using Big Data Analytics To Improve Hiv Medical Care Utilisation In South Carolina: A Study Protocol, Bankole Olatosi, Jiajia Zhang, Sharon Weissman, Jianjun Hu, Mohammad Rifat Haider, Xiaoming Li Jun 2019

Using Big Data Analytics To Improve Hiv Medical Care Utilisation In South Carolina: A Study Protocol, Bankole Olatosi, Jiajia Zhang, Sharon Weissman, Jianjun Hu, Mohammad Rifat Haider, Xiaoming Li

Faculty Publications

Introduction Linkage and retention in HIV medical care remains problematic in the USA. Extensive health utilisation data collection through electronic health records (EHR) and claims data represent new opportunities for scientific discovery. Big data science (BDS) is a powerful tool for investigating HIV care utilisation patterns. The South Carolina (SC) office of Revenue and Fiscal Affairs (RFA) data warehouse captures individual-level longitudinal health utilisation data for persons living with HIV (PLWH). The data warehouse includes EHR, claims and data from private institutions, housing, prisons, mental health, Medicare, Medicaid, State Health Plan and the department of health and human services. The ...


Big Data Investment And Knowledge Integration In Academic Libraries, Saher Manaseer, Afnan R. Alawneh, Dua Asoudi Jan 2019

Big Data Investment And Knowledge Integration In Academic Libraries, Saher Manaseer, Afnan R. Alawneh, Dua Asoudi

Copyright, Fair Use, Scholarly Communication, etc.

Recently, big data investment has become important for organizations, especially with the fast growth of data following the huge expansion in the usage of social media applications, and websites. Many organizations depend on extracting and reaching the needed reports and statistics. As the investments on big data and its storage have become major challenges for organizations, many technologies and methods have been developed to tackle those challenges.

One of such technologies is Hadoop, a framework that is used to divide big data into packages and distribute those packages through nodes to be processed, consuming less cost than the traditional storage ...


Toward The Personalization Of Copyright Law, Adi Libson, Gideon Parchomovsky Jan 2019

Toward The Personalization Of Copyright Law, Adi Libson, Gideon Parchomovsky

Faculty Scholarship at Penn Law

In this Article, we provide a blueprint for personalizing copyright law in order to reduce the deadweight loss that stems from its universal application to all users, including those who would not have paid for it. We demonstrate how big data can help identify inframarginal users, who would not pay for copyrighted content, and we explain how copyright liability and remedies should be modified in such cases.


Transparency And Algorithmic Governance, Cary Coglianese, David Lehr Jan 2019

Transparency And Algorithmic Governance, Cary Coglianese, David Lehr

Faculty Scholarship at Penn Law

Machine-learning algorithms are improving and automating important functions in medicine, transportation, and business. Government officials have also started to take notice of the accuracy and speed that such algorithms provide, increasingly relying on them to aid with consequential public-sector functions, including tax administration, regulatory oversight, and benefits administration. Despite machine-learning algorithms’ superior predictive power over conventional analytic tools, algorithmic forecasts are difficult to understand and explain. Machine learning’s “black-box” nature has thus raised concern: Can algorithmic governance be squared with legal principles of governmental transparency? We analyze this question and conclude that machine-learning algorithms’ relative inscrutability does not pose ...