Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Engineering

Fkrr-Mvsf: A Fuzzy Kernel Ridge Regression Model For Identifying Dna-Binding Proteins By Multi-View Sequence Features Via Chou's Five-Step Rule, Yi Zou, Yije Ding, Jijun Tang, Fei Guo, Li Peng Sep 2019

Fkrr-Mvsf: A Fuzzy Kernel Ridge Regression Model For Identifying Dna-Binding Proteins By Multi-View Sequence Features Via Chou's Five-Step Rule, Yi Zou, Yije Ding, Jijun Tang, Fei Guo, Li Peng

Faculty Publications

DNA-binding proteins play an important role in cell metabolism. In biological laboratories, the detection methods of DNA-binding proteins includes yeast one-hybrid methods, bacterial singles and X-ray crystallography methods and others, but these methods involve a lot of labor, material and time. In recent years, many computation-based approachs have been proposed to detect DNA-binding proteins. In this paper, a machine learning-based method, which is called the Fuzzy Kernel Ridge Regression model based on Multi-View Sequence Features (FKRR-MVSF), is proposed to identifying DNA-binding proteins. First of all, multi-view sequence features are extracted from protein sequences. Next, a Multiple Kernel Learning (MKL) algorithm ...


Fkrr-Mvsf: A Fuzzy Kernel Ridge Regression Model For Identifying Dna-Binding Proteins By Multi-View Sequence Features Via Chou's Five-Step Rule, Yi Zou, Yijie Ding, Jijun Tang, Fei Guo, Li Peng Sep 2019

Fkrr-Mvsf: A Fuzzy Kernel Ridge Regression Model For Identifying Dna-Binding Proteins By Multi-View Sequence Features Via Chou's Five-Step Rule, Yi Zou, Yijie Ding, Jijun Tang, Fei Guo, Li Peng

Faculty Publications

DNA-binding proteins play an important role in cell metabolism. In biological laboratories, the detection methods of DNA-binding proteins includes yeast one-hybrid methods, bacterial singles and X-ray crystallography methods and others, but these methods involve a lot of labor, material and time. In recent years, many computation-based approachs have been proposed to detect DNA-binding proteins. In this paper, a machine learning-based method, which is called the Fuzzy Kernel Ridge Regression model based on Multi-View Sequence Features (FKRR-MVSF), is proposed to identifying DNA-binding proteins. First of all, multi-view sequence features are extracted from protein sequences. Next, a Multiple Kernel Learning (MKL) algorithm ...


Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning, Ansi Zhang, Shaobo Li, Yuxin Cui, Wanli Yang, Rongzhi Dong, Jianjun Hu Aug 2019

Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning, Ansi Zhang, Shaobo Li, Yuxin Cui, Wanli Yang, Rongzhi Dong, Jianjun Hu

Faculty Publications

This paper focuses on bearing fault diagnosis with limited training data. A major challenge in fault diagnosis is the infeasibility of obtaining sufficient training samples for every fault type under all working conditions. Recently deep learning based fault diagnosis methods have achieved promising results. However, most of these methods require large amount of training data. In this study, we propose a deep neural network based few-shot learning approach for rolling bearing fault diagnosis with limited data. Our model is based on the siamese neural network, which learns by exploiting sample pairs of the same or different categories. Experimental results over ...


A Review Of Text Corpus-Based Tourism Big Data Mining, Qin Li, Shaobo Li, Sen Zhang, Jie Hu, Jianhun Hu Aug 2019

A Review Of Text Corpus-Based Tourism Big Data Mining, Qin Li, Shaobo Li, Sen Zhang, Jie Hu, Jianhun Hu

Faculty Publications

With the massive growth of the Internet, text data has become one of the main formats of tourism big data. As an effective expression means of tourists’ opinions, text mining of such data has big potential to inspire innovations for tourism practitioners. In the past decade, a variety of text mining techniques have been proposed and applied to tourism analysis to develop tourism value analysis models, build tourism recommendation systems, create tourist profiles, and make policies for supervising tourism markets. The successes of these techniques have been further boosted by the progress of natural language processing (NLP), machine learning, and ...


Personalized Product Evaluation Based On Gra-Topsis And Kansei Engineering, Huafeng Quan, Shaobo Li, Hongjing Wei, Jianjun Hu Jul 2019

Personalized Product Evaluation Based On Gra-Topsis And Kansei Engineering, Huafeng Quan, Shaobo Li, Hongjing Wei, Jianjun Hu

Faculty Publications

With the improvement of human living standards, users’ requirements have changed from function to emotion. Helping users pick out the most suitable product based on their subjective requirements is of great importance for enterprises. This paper proposes a Kansei engineering-based grey relational analysis and techniques for order preference by similarity to ideal solution (KE-GAR-TOPSIS) method to make a subjective user personalized ranking of alternative products. The KE-GRA-TOPSIS method integrates five methods, including Kansei Engineering (KE), analytic hierarchy process (AHP), entropy, game theory, and grey relational analysis-TOPSIS (GRA-TOPSIS). First, an evaluation system is established by KE and AHP. Second, we define ...


Using Big Data Analytics To Improve Hiv Medical Care Utilisation In South Carolina: A Study Protocol, Bankole Olatosi, Jiajia Zhang, Sharon Weissman, Jianjun Hu, Mohammad Rifat Haider, Xiaoming Li Jun 2019

Using Big Data Analytics To Improve Hiv Medical Care Utilisation In South Carolina: A Study Protocol, Bankole Olatosi, Jiajia Zhang, Sharon Weissman, Jianjun Hu, Mohammad Rifat Haider, Xiaoming Li

Faculty Publications

Introduction Linkage and retention in HIV medical care remains problematic in the USA. Extensive health utilisation data collection through electronic health records (EHR) and claims data represent new opportunities for scientific discovery. Big data science (BDS) is a powerful tool for investigating HIV care utilisation patterns. The South Carolina (SC) office of Revenue and Fiscal Affairs (RFA) data warehouse captures individual-level longitudinal health utilisation data for persons living with HIV (PLWH). The data warehouse includes EHR, claims and data from private institutions, housing, prisons, mental health, Medicare, Medicaid, State Health Plan and the department of health and human services. The ...


Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu May 2019

Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu

Faculty Publications

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available ...


Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu May 2019

Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu

Faculty Publications

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available ...


Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu May 2019

Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu

Faculty Publications

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available ...


Knowledge-Aware Assessment Of Severity Of Suicide Risk For Early Intervention, Manas Gaur, Amanuel Alambo, Joy Prakash Sain, Ugur Kursuncu, Krishnaprasad Thirunarayan, Ramakanth Kavuluru, Amit Sheth, Randon S. Welton, Jyotishman Pathak May 2019

Knowledge-Aware Assessment Of Severity Of Suicide Risk For Early Intervention, Manas Gaur, Amanuel Alambo, Joy Prakash Sain, Ugur Kursuncu, Krishnaprasad Thirunarayan, Ramakanth Kavuluru, Amit Sheth, Randon S. Welton, Jyotishman Pathak

Publications

Mental health illness such as depression is a significant risk factor for suicide ideation, behaviors, and attempts. A report by Substance Abuse and Mental Health Services Administration (SAMHSA) shows that 80% of the patients suffering from Borderline Personality Disorder (BPD) have suicidal behavior, 5-10% of whom commit suicide. While multiple initiatives have been developed and implemented for suicide prevention, a key challenge has been the social stigma associated with mental disorders, which deters patients from seeking help or sharing their experiences directly with others including clinicians. This is particularly true for teenagers and younger adults where suicide is the second ...


Multimodal Emotion Classification, Anurag Illendula, Amit Sheth May 2019

Multimodal Emotion Classification, Anurag Illendula, Amit Sheth

Publications

Most NLP and Computer Vision tasks are limited to scarcity of labelled data. In social media emotion classification and other related tasks, hashtags have been used as indicators to label data. With the rapid increase in emoji usage of social media, emojis are used as an additional feature for major social NLP tasks. However, this is less explored in case of multimedia posts on social media where posts are composed of both image and text. At the same time, w.e have seen a surge in the interest to incorporate domain knowledge to improve machine understanding of text. In this ...


Lightcpg: A Multi-View Cpg Sites Detection On Single-Cell Whole Genome Sequence Data, Limin Jiang, Chongqing Wang, Jijun Tang, Fei Gu Apr 2019

Lightcpg: A Multi-View Cpg Sites Detection On Single-Cell Whole Genome Sequence Data, Limin Jiang, Chongqing Wang, Jijun Tang, Fei Gu

Faculty Publications

Background DNA methylation plays an important role in multiple biological processes that are closely related to human health. The study of DNA methylation can provide an insight into the mechanism behind human health and can also have a positive effect on the assessment of human health status. However, the available sequencing technology is limited by incomplete CpG coverage. Therefore, it is crucial to discover an efficient and convenient method capable of distinguishing between the states of CpG sites. Previous studies focused on identifying methylation states of the CpG sites in single cell, which only evaluated sequence information or structural information ...


Convolutional Neural Networks For Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix And Magpie Descriptors, Zhuo Cao, Yabo Dan, Zheng Xiong, Chengcheng Niu, Xiang Li, Songrong Qian, Jianjun Hu Apr 2019

Convolutional Neural Networks For Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix And Magpie Descriptors, Zhuo Cao, Yabo Dan, Zheng Xiong, Chengcheng Niu, Xiang Li, Songrong Qian, Jianjun Hu

Faculty Publications

Computational prediction of crystal materials properties can help to do large-scale in-silicon screening. Recent studies of material informatics have focused on expert design of multi-dimensional interpretable material descriptors/features. However, successes of deep learning such as Convolutional Neural Networks (CNN) in image recognition and speech recognition have demonstrated their automated feature extraction capability to effectively capture the characteristics of the data and achieve superior prediction performance. Here, we propose CNN-OFM-Magpie, a CNN model with OFM (Orbital-field Matrix) and Magpie descriptors to predict the formation energy of 4030 crystal material by exploiting the complementarity of two-dimensional OFM features and Magpie features ...


Convolutional Neural Networks For Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix And Magpie Descriptors, Zhuo Cao, Yabo Dan, Zheng Xiong, Chengcheng Niu, Xiang Li, Songrong Qian, Jianjun Hu Apr 2019

Convolutional Neural Networks For Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix And Magpie Descriptors, Zhuo Cao, Yabo Dan, Zheng Xiong, Chengcheng Niu, Xiang Li, Songrong Qian, Jianjun Hu

Faculty Publications

Computational prediction of crystal materials properties can help to do large-scale in-silicon screening. Recent studies of material informatics have focused on expert design of multi-dimensional interpretable material descriptors/features. However, successes of deep learning such as Convolutional Neural Networks (CNN) in image recognition and speech recognition have demonstrated their automated feature extraction capability to effectively capture the characteristics of the data and achieve superior prediction performance. Here, we propose CNN-OFM-Magpie, a CNN model with OFM (Orbital-field Matrix) and Magpie descriptors to predict the formation energy of 4030 crystal material by exploiting the complementarity of two-dimensional OFM features and Magpie features ...


High-Performing Pgm-Free Aemfc Cathodes From Carbon-Supported Cobalt Ferrite Nanoparticles, Xiong Peng, Varchaswal Kashyap, Benjamin Ng, Sreekumar Kurungot, Lianqin Wang, John R. Varcoe, Mustain E William Mar 2019

High-Performing Pgm-Free Aemfc Cathodes From Carbon-Supported Cobalt Ferrite Nanoparticles, Xiong Peng, Varchaswal Kashyap, Benjamin Ng, Sreekumar Kurungot, Lianqin Wang, John R. Varcoe, Mustain E William

Faculty Publications

Efficient and durable non-precious metal electrocatalysts for the oxygen reduction reaction (ORR) are highly desirable for several electrochemical devices, including anion exchange membrane fuel cells (AEMFCs). Here, cobalt ferrite (CF) nanoparticles supported on Vulcan XC-72 carbon (CF-VC) were created through a facile, scalable solvothermal method. The nano-sized CF particles were spherical with a narrow particle size distribution. The CF-VC catalyst showed good ORR activity, possessing a half-wave potential of 0.71 V. Although the intrinsic activity of the CF-VC catalyst was not as high as some other platinum group metal (PGM)-free catalysts in the literature, where this catalyst really ...


Diagnosis Of Brain Diseases Via Multi-Scale Time-Series Model, Zehua Zhang, Junhai Xu, Jijun Tang, Quan Zou, Fei Guo Mar 2019

Diagnosis Of Brain Diseases Via Multi-Scale Time-Series Model, Zehua Zhang, Junhai Xu, Jijun Tang, Quan Zou, Fei Guo

Faculty Publications

The functional magnetic resonance imaging (fMRI) data and brain network analysis have been widely applied to automated diagnosis of neural diseases or brain diseases. The fMRI time series data not only contains specific numerical information, but also involves rich dynamic temporal information, those previous graph theory approaches focus on local topology structure and lose contextual information and global fluctuation information. Here, we propose a novel multi-scale functional connectivity for identifying the brain disease via fMRI data. We calculate the discrete probability distribution of co-activity between different brain regions with various intervals. Also, we consider nonsynchronous information under different time dimensions ...


Application Of The Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology To Compute First- And Second-Order Sensitivities Of Flux Functionals In A Multiplying System With Source, Dan Gabriel Cacuci Feb 2019

Application Of The Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology To Compute First- And Second-Order Sensitivities Of Flux Functionals In A Multiplying System With Source, Dan Gabriel Cacuci

Faculty Publications

This work presents an application of the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) to the neutron transport Boltzmann equation that models a multiplying subcritical system comprising a nonfission neutron source to compute efficiently and exactly all of the first- and second-order functional derivatives (sensitivities) of a detector’s response to all of the model’s parameters, including isotopic number densities, microscopic cross sections, fission spectrum, sources, and detector response function. As indicated by the general theoretical considerations underlying the 2nd-ASAM, the number of computations required to obtain the first and second orders increases linearly in augmented Hilbert spaces as opposed ...


Discovering Cancer Subtypes Via An Accurate Fusion Strategy On Multiple Profile Data, Limin Jiang, Yongkang Xiao, Yijie Ding, Jijun Tang, Fei Guo Feb 2019

Discovering Cancer Subtypes Via An Accurate Fusion Strategy On Multiple Profile Data, Limin Jiang, Yongkang Xiao, Yijie Ding, Jijun Tang, Fei Guo

Faculty Publications

Discovering cancer subtypes is useful for guiding clinical treatment of multiple cancers. Progressive profile technologies for tissue have accumulated diverse types of data. Based on these types of expression data, various computational methods have been proposed to predict cancer subtypes. It is crucial to study how to better integrate these multiple profiles of data. In this paper, we collect multiple profiles of data for five cancers on The Cancer Genome Atlas (TCGA). Then, we construct three similarity kernels for all patients of the same cancer by gene expression, miRNA expression and isoform expression data. We also propose a novel unsupervised ...


Multivariate Information Fusion With Fast Kernel Learning To Kernel Ridge Regression In Predicting Lncrna-Protein Interactions, Cong Shen, Yijie Ding, Jijun Tang, Fei Guo Jan 2019

Multivariate Information Fusion With Fast Kernel Learning To Kernel Ridge Regression In Predicting Lncrna-Protein Interactions, Cong Shen, Yijie Ding, Jijun Tang, Fei Guo

Faculty Publications

Long non-coding RNAs (lncRNAs) constitute a large class of transcribed RNA molecules. They have a characteristic length of more than 200 nucleotides which do not encode proteins. They play an important role in regulating gene expression by interacting with the homologous RNA-binding proteins. Due to the laborious and time-consuming nature of wet experimental methods, more researchers should pay great attention to computational approaches for the prediction of lncRNA-protein interaction (LPI). An in-depth literature review in the state-of-the-art in silico investigations, leads to the conclusion that there is still room for improving the accuracy and velocity. This paper propose a novel ...


Determination Of Personalized Asthma Triggers From Multimodal Sensing And A Mobile App: Observational Study, Revathy Venkataramanan, Krishnaprasad Thirunarayan, Utkarshani Jaimini, Dipesh Kadariya, Hong Yung Yip, Maninder Kalra, Amit Sheth Jan 2019

Determination Of Personalized Asthma Triggers From Multimodal Sensing And A Mobile App: Observational Study, Revathy Venkataramanan, Krishnaprasad Thirunarayan, Utkarshani Jaimini, Dipesh Kadariya, Hong Yung Yip, Maninder Kalra, Amit Sheth

Publications

Background: Asthma is a chronic pulmonary disease with multiple triggers. It can be managed by strict adherence to an asthma care plan and by avoiding these triggers. Clinicians cannot continuously monitor their patients’ environment and their adherence to an asthma care plan, which poses a significant challenge for asthma management.

Objective: In this study, pediatric patients were continuously monitored using low-cost sensors to collect asthma-relevant information. The objective of this study was to assess whether kHealth kit, which contains low-cost sensors, can identify personalized triggers and provide actionable insights to clinicians for the development of a tailored asthma care plan ...


Identifying Key Topics Bearing Negative Sentiment On Twitter: Insights Concerning The 2015-2016 Zika Epidemic, Ravali Mamidi, Michele Miller, Tanvi Banerjee, William Romine, Amit Sheth Jan 2019

Identifying Key Topics Bearing Negative Sentiment On Twitter: Insights Concerning The 2015-2016 Zika Epidemic, Ravali Mamidi, Michele Miller, Tanvi Banerjee, William Romine, Amit Sheth

Publications

Background To understand the public sentiment regarding the Zika virus, social media can be leveraged to understand how positive, negative, and neutral sentiments are expressed in society. Specifically, understanding the characteristics of negative sentiment could help inform federal disease control agencies’ efforts to disseminate relevant information to the public about Zika-related issues.

Objective The purpose of this study was to analyze the public sentiment concerning Zika using posts on Twitter and determine the qualitative characteristics of positive, negative, and neutral sentiments expressed.

Methods Machine learning techniques and algorithms were used to analyze the sentiment of tweets concerning Zika. A supervised ...