Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

Robotics

Institution
Keyword
Publication
File Type

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Hardware Implementation Of Assistive Technology Robot, Joycephine Li Dec 2019

Hardware Implementation Of Assistive Technology Robot, Joycephine Li

Publications and Research

SuperHERO is an on-going research project in Computer Engineering Technology department which involves upgrading Heathkit Education Robot (HERO) hardware circuits and features by using modern hardware devices and sensors. The current phase of the project will focus on upgrading the motor drive system hardware as well as implementation and testing of features such as mobile robot obstacle detection and other assistive technologies to help people with disabilities. This involves the reattachment of the robot arm after repairing and updating with 3D printing and using modern hardware and software technology. We observed that the robotic arm has rotary and translation movements ...


Chapman Ambassador Tour Robot, Alexandra Lewandowski, Yanni Parissis, Khiry Carter, Hilary Lee Dec 2019

Chapman Ambassador Tour Robot, Alexandra Lewandowski, Yanni Parissis, Khiry Carter, Hilary Lee

Student Scholar Symposium Abstracts and Posters

Being a student ambassador improves a student's confidence and leadership skills. With an increasing demand for technology skills, our project will display how the ambassador robot can assist student ambassadors while improving upon their efficiency, by discussing information during college campus tours and familiarizing students with robot applications and their technology. The ambassador robot can support students during tours by answering a question about specific knowledge that may have slipped an ambassador's mind. The robot will also be able to create a group-focused atmosphere that will allow ambassadors to have the opportunity to lean on a dependable teammate ...


How Degrees Of Freedom Affects Sense Of Agency, Akima Connelly, Jungsu Pak, Tian Lan, Uri Maoz Dec 2019

How Degrees Of Freedom Affects Sense Of Agency, Akima Connelly, Jungsu Pak, Tian Lan, Uri Maoz

Student Scholar Symposium Abstracts and Posters

Can the rubber-hand illusion be extended to a moving robotic arm in different degrees of freedom (DOF), inducing sense of ownership & agency over the arm? We hypothesize that DOF closer to what humans possess will result in a stronger sense of ownership and agency.


Self-Driving Toy Car Using Deep Learning, Fahim Ahmed, Suleyman Turac, Mubtasem Ali Dec 2019

Self-Driving Toy Car Using Deep Learning, Fahim Ahmed, Suleyman Turac, Mubtasem Ali

Publications and Research

Our research focuses on building a student affordable platform for scale model self-driving cars. The goal of this project is to explore current developments of Open Source hardware and software to build a low-cost platform consisting of the car chassis/framework, sensors, and software for the autopilot. Our research will allow other students with low budget to enter into the world of Deep Learning, self-driving cars, and autonomous cars racing competitions.


An Approach To Fast Multi-Robot Exploration In Buildings With Inaccessible Spaces, Matt Mcneill, Damian Lyons Dec 2019

An Approach To Fast Multi-Robot Exploration In Buildings With Inaccessible Spaces, Matt Mcneill, Damian Lyons

Faculty Publications

The rapid exploration of unknown environments is a common application of autonomous multi-robot teams. For some types of exploration missions, a mission designer may possess some rudimentary knowledge about the area to be explored. For example, the dimensions of a building may be known, but not its floor layout or the location of furniture and equipment inside. For this type of mission, the Space- Based Potential Field (SBPF) method is an approach to multirobot exploration which leverages a priori knowledge of area bounds to determine robot motion. Explored areas and obstacles exert a repulsive force, and unexplored areas exert an ...


A Collaborative Visual Localization Scheme For A Low-Cost Heterogeneous Robotic Team With Non-Overlapping Perspectives, Benjamin Abruzzo, David Cappelleri, Philippos Mordohai Nov 2019

A Collaborative Visual Localization Scheme For A Low-Cost Heterogeneous Robotic Team With Non-Overlapping Perspectives, Benjamin Abruzzo, David Cappelleri, Philippos Mordohai

West Point Research Papers

This paper presents and evaluates a relative localization scheme for a heterogeneous team of low-cost mobile robots. An error-state, complementary Kalman Filter was developed to fuse analytically-derived uncertainty of stereoscopic pose measurements of an aerial robot, made by a ground robot, with the inertial/visual proprioceptive measurements of both robots. Results show that the sources of error, image quantization, asynchronous sensors, and a non-stationary bias, were sufficiently modeled to estimate the pose of the aerial robot. In both simulation and experiments, we demonstrate the proposed methodology with a heterogeneous robot team, consisting of a UAV and a UGV tasked with ...


Robot Simulation Analysis, Jacob Miller, Jeremy Evert Nov 2019

Robot Simulation Analysis, Jacob Miller, Jeremy Evert

Student Research

• Simulate virtual robot for test and analysis

• Analyze SLAM solutions using ROS

• Assemble a functional Turtlebot

• Emphasize projects related to current research trajectories for NASA, and general robotics applications


Cascaded Neural Networks For Identification And Posture-Based Threat Assessment Of Armed People, Benjamin Abruzzo, Kevin Carey, Christopher Lowrance, Eric Sturzinger, Ross Arnold, Christopher Korpela Nov 2019

Cascaded Neural Networks For Identification And Posture-Based Threat Assessment Of Armed People, Benjamin Abruzzo, Kevin Carey, Christopher Lowrance, Eric Sturzinger, Ross Arnold, Christopher Korpela

West Point Research Papers

This paper presents a near real-time, multi-stage classifier which identifies people and handguns in images, and then further assesses the threat-level that a person poses based on their body posture. The first stage consists of a convolutional neural network (CNN) that determines whether a person and a handgun are present in an image. If so, a second stage CNN is then used to estimate the pose of the person detected to have a handgun. Lastly, a feed-forward neural network (NN) makes the final threat assessment based on the joint positions of the person’s skeletal pose estimate from the previous ...


Exercises Integrating High School Mathematics With Robot Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal Oct 2019

Exercises Integrating High School Mathematics With Robot Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal

Computer Science: Faculty Publications and Other Works

This paper presents progress in developing exercises for high school students incorporating level-appropriate mathematics into robotics activities. We assume mathematical foundations ranging from algebra to precalculus, whereas most prior work on integrating mathematics into robotics uses only very elementary mathematical reasoning or, at the other extreme, is comprised of technical papers or books using calculus and other advanced mathematics. The exercises suggested are relevant to any differerential-drive robot, which is an appropriate model for many different varieties of educational robots. They guide students towards comparing a variety of natural navigational strategies making use of typical movement primitives. The exercises align ...


Dimensional Analysis Of Robot Software Without Developer Annotations, John-Paul W. Ore Jul 2019

Dimensional Analysis Of Robot Software Without Developer Annotations, John-Paul W. Ore

Computer Science and Engineering: Theses, Dissertations, and Student Research

Robot software risks the hazard of dimensional inconsistencies. These inconsistencies occur when a program incorrectly manipulates values representing real-world quantities. Incorrect manipulation has real-world consequences that range in severity from benign to catastrophic. Previous approaches detect dimensional inconsistencies in programs but require extra developer effort and technical complications. The extra effort involves developers creating type annotations for every variable representing a real-world quantity that has physical units, and the technical complications include toolchain burdens like specialized compilers or type libraries.

To overcome the limitations of previous approaches, this thesis presents novel methods to detect dimensional inconsistencies without developer annotations. We ...


Mathematics And Programming Exercises For Educational Robot Navigation, Ronald I. Greenberg Jul 2019

Mathematics And Programming Exercises For Educational Robot Navigation, Ronald I. Greenberg

Computer Science: Faculty Publications and Other Works

This paper points students towards ideas they can use towards developing a convenient library for robot navigation, with examples based on Botball primitives, and points educators towards mathematics and programming exercises they can suggest to students, especially advanced high school students.


Evaluation Of Field Of View Width In Stereo-Vision-Based Visual Homing, Damian Lyons, Benjamin Barriage, Luca Del Signore Jul 2019

Evaluation Of Field Of View Width In Stereo-Vision-Based Visual Homing, Damian Lyons, Benjamin Barriage, Luca Del Signore

Faculty Publications

Visual homing is a local navigation technique used to direct a robot to a previously seen location by comparing the image of the original location with the current visual image. Prior work has shown that exploiting depth cues such as image scale or stereo-depth in homing leads to improved homing performance. While it is not unusual to use a panoramic field of view (FOV) camera in visual homing, it is unusual to have a panoramic FOV stereo-camera. So, while the availability of stereo-depth information may improve performance, the concomitant-restricted FOV may be a detriment to performance, unless specialized stereo hardware ...


Chatbots: Conversation Killers Or Makers?, Jing Jiang Jul 2019

Chatbots: Conversation Killers Or Makers?, Jing Jiang

MITB Thought Leadership Series

Whether you’re aware of it or not, the chances are you’ve been chatting to robots of late. While these bots are faceless and unseen, don’t be fooled into thinking they aren’t there. In fact, chatbots, have been around since the 1960s at least, but with the progress in artificial intelligence, cloud computing and voice recognition, they’ve received both a functionality and a popularity boost. From the cosmetic to the life-changing, nowadays, chatbots can do anything from helping a person lose weight to assisting refugees applying for asylum.


Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin Jul 2019

Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin

Honors Projects

A 3D printed hand and arm prosthetic was created from the idea of adding bionic elements while keeping the cost low. It was designed based on existing models, desired functions, and materials available. A tilt sensor keeps the hand level, two motors move the wrist in two different directions, a limit switch signals the fingers to open and close, and another motor helps open and close the fingers. All sensors and motors were built on a circuit board, programmed using an Arduino, and powered by a battery. Other supporting materials include metal brackets, screws, guitar strings, elastic bands, small clamps ...


The Future Robo-Advisor, Catalin Burlacu May 2019

The Future Robo-Advisor, Catalin Burlacu

MITB Thought Leadership Series

The accelerated digitalisation of both people and business around the world today is having a huge impact on the investment management and advisory space. The addition of new and vastly larger data sets, as well as exponentially more sophisticated analytical tools to turn that data into usable information is constantly changing the way investments are decided on, made and managed.


3d Printed Smart Mobile, Bingfang Chen May 2019

3d Printed Smart Mobile, Bingfang Chen

Publications and Research

The goal of this research project is to design and build a prototype of a smart mobile robot to participate and compete in IEEE Micro-mouse and similar competitions. The robot has to find its way out of a maze as quickly as possible, by exploring and learning the paths in the maze. 3D printing technology will be used to build a lightweight robot frame so that it can move at a fast speed.


A Generative Human-Robot Motion Retargeting Approach Using A Single Rgbd Sensor, Sen Wang, Xinxin Zuo, Runxiao Wang, Ruigang Yang Apr 2019

A Generative Human-Robot Motion Retargeting Approach Using A Single Rgbd Sensor, Sen Wang, Xinxin Zuo, Runxiao Wang, Ruigang Yang

Computer Science Faculty Publications

The goal of human-robot motion retargeting is to let a robot follow the movements performed by a human subject. Typically in previous approaches, the human poses are precomputed from a human pose tracking system, after which the explicit joint mapping strategies are specified to apply the estimated poses to a target robot. However, there is not any generic mapping strategy that we can use to map the human joint to robots with different kinds of configurations. In this paper, we present a novel motion retargeting approach that combines the human pose estimation and the motion retargeting procedure in a unified ...


Exoskeleton, Vinu Casper, Liliana Fitzpatrick Apr 2019

Exoskeleton, Vinu Casper, Liliana Fitzpatrick

Engineering and Technology Management Student Projects

This is a research about the marketing plan for exoskeleton wearable devices. The objective is to provide a meaningful Customer Value Proposition to the prospective customers.The Samsung company SWOT analysis is the basis for a marketing strategy. The exoskeleton features and market definition is included in the analysis. A competitor analysis of homogeneus exoskeletons providers is included to review the current market. An exhaustive customer analysis was performed to identify the customer needs as the input for the marketing plan development. The potential market was identified to learn about the exoskeleton market share opportunity. The exoskeleton global market is ...


Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg Apr 2019

Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg

Computer Science: Faculty Publications and Other Works

This paper shows how students can be guided to integrate elementary mathematical analyses with motion planning for typical educational robots. Rather than using calculus as in comprehensive works on motion planning, we show students can achieve interesting results using just simple linear regression tools and trigonometric analyses. Experiments with one robotics platform show that use of these tools can lead to passable navigation through dead reckoning even if students have limited experience with use of sensors, programming, and mathematics.


A Deep Recurrent Q Network Towards Self-Adapting Distributed Microservices Architecture (In Press), Basel Magableh Jan 2019

A Deep Recurrent Q Network Towards Self-Adapting Distributed Microservices Architecture (In Press), Basel Magableh

Articles

One desired aspect of microservices architecture is the ability to self-adapt its own architecture and behaviour in response to changes in the operational environment. To achieve the desired high levels of self-adaptability, this research implements the distributed microservices architectures model, as informed by the MAPE-K model. The proposed architecture employs a multi adaptation agents supported by a centralised controller, that can observe the environment and execute a suitable adaptation action. The adaptation planning is managed by a deep recurrent Q-network (DRQN). It is argued that such integration between DRQN and MDP agents in a MAPE-K model offers distributed microservice architecture ...


Programming Of Collaborative Robot (Cobot) To Selectively Disassemble Products To Obtain Critical Materials, Brittany Felder Jan 2019

Programming Of Collaborative Robot (Cobot) To Selectively Disassemble Products To Obtain Critical Materials, Brittany Felder

ROEU 2018-19

End-of-life products that contain critical materials, such as rare earth magnets, are often discarded even though there is remaining value that can be fed back into a remanufacturing process. This research aims to develop high throughput and economic value recovery from electric machines using collaborative robotics.


Evaluation Of Suas Education And Training Tools, Brent Terwilliger, Scott Burgess, James Solti, Kristine Kiernan, Christian Janke, Andrew Shepherd Jan 2019

Evaluation Of Suas Education And Training Tools, Brent Terwilliger, Scott Burgess, James Solti, Kristine Kiernan, Christian Janke, Andrew Shepherd

Publications

The wide distribution and demographic composition of students seeking small unmanned aircraft system (sUAS) education presents a need to fully understand the capabilities, limitations, and dependencies of effective training tools. Concepts, practices, and technologies associated with modeling and simulation, immersive gaming, augmented and mixed-reality, and remote operation have demonstrated efficacy to support engaged student learning and objective satisfaction. Identification and comparison of key attributes critical to an aviation educational framework, such as competency-based training, enables educational designers to identify those tools with the highest potential to support successful learning. A series of factors, such as system performance, regulatory compliance, environmental ...


Improvement Of The Material’S Mechanical Characteristics Using Intelligent Real Time Control Interfaces In Hfc Hardening Process, Florentin Smarandache, Luige Vladareanu, Mihaiela Iliescu, Victor Vladareanu, Alexandru Gal, Octavian Melinte, Adrian Margean Jan 2019

Improvement Of The Material’S Mechanical Characteristics Using Intelligent Real Time Control Interfaces In Hfc Hardening Process, Florentin Smarandache, Luige Vladareanu, Mihaiela Iliescu, Victor Vladareanu, Alexandru Gal, Octavian Melinte, Adrian Margean

Mathematics and Statistics Faculty and Staff Publications

The paper presents Intelligent Control (IC) Interfaces for real time control of mechatronic systems applied to Hardening Process Control (HPC) in order to improvement of the material’s mechanical characteristics. Implementation of IC laws in the intelligent real time control interfaces depends on the particular circumstances of the models characteristics used and the exact definition of optimization problem. The results led to the development of the IC interfaces in real time through Particle Swarm Optimization (PSO) and neural networks (NN) using off- line the regression methods.


The Use Of Agricultural Robots In Weed Management And Control, Brian L. Steward, Jingyao Gai, Lie Tang Jan 2019

The Use Of Agricultural Robots In Weed Management And Control, Brian L. Steward, Jingyao Gai, Lie Tang

Agricultural and Biosystems Engineering Publications

Weed management and control are essential for the production of high-yielding and high-quality crops, and advances in weed control technology have had a huge impact on agricultural productivity. Any effective weed control technology needs to be both robust and adaptable. Robust weed control technology will successfully control weeds in spite of variability in the field conditions. Adaptable weed control technology has the capacity to change its strategy in the context of evolving weed populations, genetics, and climatic conditions. This chapter focuses on key work in the development of robotic weeders, including weed perception systems and weed control mechanisms. Following an ...


A Hardware-Deployable Neuromorphic Solution For Encoding And Classification Of Electronic Nose Data, Anup Vanarse, Alexander Rassau, Peter Van Der Made Jan 2019

A Hardware-Deployable Neuromorphic Solution For Encoding And Classification Of Electronic Nose Data, Anup Vanarse, Alexander Rassau, Peter Van Der Made

ECU Publications Post 2013

In several application domains, electronic nose systems employing conventional data processing approaches incur substantial power and computational costs and limitations, such as significant latency and poor accuracy for classification. Recent developments in spike-based bio-inspired approaches have delivered solutions for the highly accurate classification of multivariate sensor data with minimized computational and power requirements. Although these methods have addressed issues related to efficient data processing and classification accuracy, other areas, such as reducing the processing latency to support real-time application and deploying spike-based solutions on supported hardware, have yet to be studied in detail. Through this investigation, we proposed a spiking ...


Effective Plant Discrimination Based On The Combination Of Local Binary Pattern Operators And Multiclass Support Vector Machine Methods, Vi N T Le, Beniamin Apopei, Kamal Alameh Jan 2019

Effective Plant Discrimination Based On The Combination Of Local Binary Pattern Operators And Multiclass Support Vector Machine Methods, Vi N T Le, Beniamin Apopei, Kamal Alameh

ECU Publications Post 2013

Accurate crop and weed discrimination plays a critical role in addressing the challenges of weed management in agriculture. The use of herbicides is currently the most common approach to weed control. However, herbicide resistant plants have long been recognised as a major concern due to the excessive use of herbicides. Effective weed detection techniques can reduce the cost of weed management and improve crop quality and yield. A computationally efficient and robust plant classification algorithm is developed and applied to the classification of three crops: Brassica napus (canola), Zea mays (maize/corn), and radish. The developed algorithm is based on ...


Real-Time Classification Of Multivariate Olfaction Data Using Spiking Neural Networks, Arnup Vanarse, Adam Osseiran, Alexander Rassau, Therese O'Sullivan, Jonny Lo, Amanda Devine Jan 2019

Real-Time Classification Of Multivariate Olfaction Data Using Spiking Neural Networks, Arnup Vanarse, Adam Osseiran, Alexander Rassau, Therese O'Sullivan, Jonny Lo, Amanda Devine

ECU Publications Post 2013

Recent studies in bioinspired artificial olfaction, especially those detailing the application of spike-based neuromorphic methods, have led to promising developments towards overcoming the limitations of traditional approaches, such as complexity in handling multivariate data, computational and power requirements, poor accuracy, and substantial delay for processing and classification of odors. Rank-order-based olfactory systems provide an interesting approach for detection of target gases by encoding multi-variate data generated by artificial olfactory systems into temporal signatures. However, the utilization of traditional pattern-matching methods and unpredictable shuffling of spikes in the rank-order impedes the performance of the system. In this paper, we present an ...