Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Imaging Of Glucose Metabolism By 13c-Mri Distinguishes Pancreatic Cancer Subtypes In Mice, Shun Kishimoto, Jeffrey R. Brender, Daniel R. Crooks, Shingo Matsumoto, Tomohiro Seki, Nobu Oshima, Hellmut Merkle, Penghui Lin, Galen Reed, Albert P. Chen, Jan Henrik Ardenkjaer-Larsen, Jeeva Munasinghe, Keita Saito, Kazutoshi Yamamoto, Peter L. Choyke, James Mitchell, Andrew N. Lane, Teresa W. M. Fan, W. Marston Linehan, Murali C. Krishna Aug 2019

Imaging Of Glucose Metabolism By 13c-Mri Distinguishes Pancreatic Cancer Subtypes In Mice, Shun Kishimoto, Jeffrey R. Brender, Daniel R. Crooks, Shingo Matsumoto, Tomohiro Seki, Nobu Oshima, Hellmut Merkle, Penghui Lin, Galen Reed, Albert P. Chen, Jan Henrik Ardenkjaer-Larsen, Jeeva Munasinghe, Keita Saito, Kazutoshi Yamamoto, Peter L. Choyke, James Mitchell, Andrew N. Lane, Teresa W. M. Fan, W. Marston Linehan, Murali C. Krishna

Center for Environmental and Systems Biochemistry Faculty Publications

Metabolic differences among and within tumors can be an important determinant in cancer treatment outcome. However, methods for determining these differences non-invasively in vivo is lacking. Using pancreatic ductal adenocarcinoma as a model, we demonstrate that tumor xenografts with a similar genetic background can be distinguished by their differing rates of the metabolism of 13C labeled glucose tracers, which can be imaged without hyperpolarization by using newly developed techniques for noise suppression. Using this method, cancer subtypes that appeared to have similar metabolic profiles based on steady state metabolic measurement can be distinguished from each other. The metabolic maps from ...


A Fully-Flexible Solution-Processed Autonomous Glucose Indicator, Jonathan D. Yuen, Ankit Baingane, Qumrul Hasan, Lisa C. Shriver-Lake, Scott A. Walper, Daniel Zabetakis, Joyce C. Breger, David A. Stenger, Gymama Slaughter Jan 2019

A Fully-Flexible Solution-Processed Autonomous Glucose Indicator, Jonathan D. Yuen, Ankit Baingane, Qumrul Hasan, Lisa C. Shriver-Lake, Scott A. Walper, Daniel Zabetakis, Joyce C. Breger, David A. Stenger, Gymama Slaughter

Bioelectrics Publications

We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge ...