Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

Manufacturing

Institution
Keyword
Publication

Articles 1 - 24 of 24

Full-Text Articles in Engineering

Processing Of Alnico Magnets By Additive Manufacturing, Emma White, Emily Rinko, Timothy Prost, Timothy Horn, Christopher Ledford, Christopher Rock, Iver E. Anderson Nov 2019

Processing Of Alnico Magnets By Additive Manufacturing, Emma White, Emily Rinko, Timothy Prost, Timothy Horn, Christopher Ledford, Christopher Rock, Iver E. Anderson

Ames Laboratory Accepted Manuscripts

Permanent magnets without rare earth (RE) elements, such as alnico, will improve supply stability and potentially decrease permanent magnet cost, especially for traction drive motors and other increased temperature applications. Commercial alnico magnets with the highest energy product are produced by directional solidification (DS) to achieve a <001> columnar grain orientation followed by significant final machining, adding to the high cost. Additive manufacturing (AM) is an effective method to process near net-shape parts with minimal final machining of complex geometries. AM also, has potential for texture/grain orientation control and compositionally graded structures. This report describes fabrication of alnico magnets by ...


The Business Case For Industrial Safety: Revealing The Comprehensive Value Of Ergonomic Investments For Manufacturing Enterprises In Industry 4.0, Shane Stan Oct 2019

The Business Case For Industrial Safety: Revealing The Comprehensive Value Of Ergonomic Investments For Manufacturing Enterprises In Industry 4.0, Shane Stan

Honors Theses, University of Nebraska-Lincoln

How can today’s manufacturing enterprises construct, implement, and optimize modern safety initiatives in a manner that will present maximum return on investment and facilitate enterprise growth? Furthermore, how can these manufacturers assure individual ergonomic investments become part of a larger strategy to facilitate organizational change in safety? This work addresses these questions by placing industrial ergonomics in a business improvement context which comprehensively presents the financial returns and growth opportunities poised by modern safety initiatives. Additionally, to further strengthen the business case for industrial safety, an ergonomic action planning framework is established to guide the creation of holistic safety ...


A Displacement Controlled Fatigue Test Method For Additively Manufactured Materials, Mohammad Masud Parvez, Yitao Chen, Sreekar Karnati, Connor Coward, Joseph William Newkirk, Frank W. Liou Aug 2019

A Displacement Controlled Fatigue Test Method For Additively Manufactured Materials, Mohammad Masud Parvez, Yitao Chen, Sreekar Karnati, Connor Coward, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

A novel adaptive displacement-controlled test setup was developed for fatigue testing on mini specimens. In property characterization of additive manufacturing materials, mini specimens are preferred due to the specimen preparation, and manufacturing cost but mini specimens demonstrate higher fatigue strength than standard specimens due to the lower probability of material defects resulting in fatigue. In this study, a dual gauge section Krouse type mini specimen was designed to conduct fatigue tests on additively manufactured materials. The large surface area of the specimen with a constant stress distribution and increased control volume as the gauge section may capture all different types ...


Maquiladoras In Central America: An Analysis Of Workforce Schedule, Productivity And Fatigue., Jose L. Barahona Jul 2019

Maquiladoras In Central America: An Analysis Of Workforce Schedule, Productivity And Fatigue., Jose L. Barahona

Masters Theses & Specialist Projects

Textile factories or Maquiladoras are very abundant and predominant in Central American economies. However, they all do not have the same standardized work schedule or routines. Most of the Maquiladoras only follow schedules and regulations established by the current labor laws without taking into consideration many variables within their organization that could affect their overall performance. As a result, the purpose of the study is to analyze the current working structure of a textile Maquiladora and determine the most suitable schedule that will abide with the current working structure but also increase production levels, employee morale and decrease employee fatigue ...


Bioprinting With Human Stem Cell-Laden Alginate-Gelatin Bioink And Bioactive Glass For Tissue Engineering, Krishna C. R. Kolan, Julie A. Semon, Bradley Bromet, D. E. Day, Ming-Chuan Leu Jul 2019

Bioprinting With Human Stem Cell-Laden Alginate-Gelatin Bioink And Bioactive Glass For Tissue Engineering, Krishna C. R. Kolan, Julie A. Semon, Bradley Bromet, D. E. Day, Ming-Chuan Leu

Biological Sciences Faculty Research & Creative Works

Three-dimensional (3D) bioprinting technologies have shown great potential in the fabrication of 3D models for different human tissues. Stem cells are an attractive cell source in tissue engineering as they can be directed by material and environmental cues to differentiate into multiple cell types for tissue repair and regeneration. In this study, we investigate the viability of human adipose-derived mesenchymal stem cells (ASCs) in alginate-gelatin (Alg-Gel) hydrogel bioprinted with or without bioactive glass. Highly angiogenic borate bioactive glass (13-93B3) in 50 wt% is added to polycaprolactone (PCL) to fabricate scaffolds using a solvent-based extrusion 3D bioprinting technique. The fabricated scaffolds ...


Bulk-Explosion-Induced Metal Spattering During Laser Processing, Cang Zhao, Qilin Guo, Xuxiao Li, Niranjan Parab, Kamel Fezzaa, Wenda Tan, Lianyi Chen, Tao Sun Jun 2019

Bulk-Explosion-Induced Metal Spattering During Laser Processing, Cang Zhao, Qilin Guo, Xuxiao Li, Niranjan Parab, Kamel Fezzaa, Wenda Tan, Lianyi Chen, Tao Sun

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Spattering has been a problem in metal processing involving high-power lasers, like laser welding, machining, and recently, additive manufacturing. Limited by the capabilities of in situ diagnostic techniques, typically imaging with visible light or laboratory x-ray sources, a comprehensive understanding of the laser-spattering phenomenon, particularly the extremely fast spatters, has not been achieved yet. Here, using MHz single-pulse synchrotron-x-ray imaging, we probe the spattering behavior of Ti-6Al-4V with micrometer spatial resolution and subnanosecond temporal resolution. Combining direct experimental observations, quantitative image analysis, as well as numerical simulations, our study unravels a novel mechanism of laser spattering: The bulk explosion of ...


Investigation Of Nondestructive Testing Methods For Friction Stir Welding, Hossein Taheri, Margaret Kilpatrick, Matthew Norvalls, Warren Harper, Lucas Koester, Timothy Bigelow, Leonard J. Bond May 2019

Investigation Of Nondestructive Testing Methods For Friction Stir Welding, Hossein Taheri, Margaret Kilpatrick, Matthew Norvalls, Warren Harper, Lucas Koester, Timothy Bigelow, Leonard J. Bond

Electrical and Computer Engineering Publications

Friction stir welding is a method of materials processing that enables the joining of similar and dissimilar materials. The process, as originally designed by The Welding Institute (TWI), provides a unique approach to manufacturing—where materials can be joined in many designs and still retain mechanical properties that are similar to, or greater than, other forms of welding. This process is not free of defects that can alter, limit, and occasionally render the resulting weld unusable. Most common amongst these defects are kissing bonds, wormholes and cracks that are often hidden from visual inspection. To identify these defects, various nondestructive ...


Problem Based Learning: A Case Study From Mechanical Engineering, Kevin Delaney, Ger Nagle May 2019

Problem Based Learning: A Case Study From Mechanical Engineering, Kevin Delaney, Ger Nagle

Conference papers

Engineering graduates today must be capable of much more than solving technical problems taught in engineering school. Despite learning to quantify the performance of certain engineering objects, undergraduate students find it challenging to integrate these elements into basic design concepts through a coherent and systematic design process. To help students develop real-world engineering skills as part of their engineering education, the Mechanical Engineering Discipline in Technological University Dublin (TU Dublin) introduced Problem Based Learning (PBL) for Third Year Mechanical Engineering students in 2005.

A recent review of this teaching approach highlighted deficiencies not envisaged when the initial PBL module was ...


Increasing Operator Skills In A Manufacturing Environment, Bobbie Lee Hubbard Apr 2019

Increasing Operator Skills In A Manufacturing Environment, Bobbie Lee Hubbard

Instructional Design Capstones Collection

A plastic-injection molding facility is converting many machines into more automated systems. These complex systems require higher-level skill sets than current operators have been trained in. There is a need to increase the level of competency in most, if not all, of the operators at the Facility, and create a system of levels that engages employees and encourages learning new skills to increase their position and pay.

There is a need for a clear path of compensation based on skills and actions. The Facility is currently not optimizing or maximizing their current portfolio of machines and resources, leaving an unknown ...


Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers Apr 2019

Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A freeform extrusion fabrication process for producing three - dimensional ceramic, metal and functionally gradient composite objects, including the steps of filling a plurality of paste sources with a respective plurality of aqueous paste compositions, operationally connecting respective syringes containing respective aqueous paste compositions to a mix ing chamber, moving a first aqueous paste composition from a first respective paste source into the mixing chamber, moving a second aqueous paste composition from a second respective paste source into the mixing chamber, mixing the first and second aqueous paste compositions to define a first admixture having a first admixture composition, extruding the ...


Restore-L Satellite Servicing Internship Final Report, Giovanni Campos Apr 2019

Restore-L Satellite Servicing Internship Final Report, Giovanni Campos

Publications and Research

This paper reviews the Restore-L mission purpose and the necessary research and simulations to meet mission specification for the Propellant Transfer Subsystem (PTS). It is essential the PTS undergoes functionality testing, environmental testing, and calculations to understand the capabilities of the system. For the testing of components from PTS, a proper test setup is required. It is vital for test hardware, such as hoses and valves, to stay in place while the test is being performed. For the test hardware to operate correctly, positioning, orientation, and alignment are critical as well. In addition to the testing, calculations for pressure drop ...


Extrusion Production Of 3d Printer Filament For Additive Manufacturing, Patrick Hardy, Cole Angermayer, Rhett Lokey, Rebeca Book, Jeanne H. Norton Apr 2019

Extrusion Production Of 3d Printer Filament For Additive Manufacturing, Patrick Hardy, Cole Angermayer, Rhett Lokey, Rebeca Book, Jeanne H. Norton

Posters

Additive manufacturing, also known as 3D printing, is becoming a go-to production method for short production runs and rapid prototyping on a commercial scale. The growth of additive manufacturing is due to many fac­tors including development of concept modeling, product designing, prototyping, and customized parts. Pittsburg State University’s College of Technology strives to stay at the cutting edge of processing materials for additive manufacturing. The capability of making our own 3D-printer filament would allow students to work with new and different materials and would allow students to learn at the forefront of 3D printing technology. The Wayne Yellowjacket ...


Improved Molding Tool For Plastics Engineering Technology Injection Molder, Caleb Luthi, Tyler Burger, Andrew Huffman, Paul Herring, Jeanne H. Norton Apr 2019

Improved Molding Tool For Plastics Engineering Technology Injection Molder, Caleb Luthi, Tyler Burger, Andrew Huffman, Paul Herring, Jeanne H. Norton

Posters

Plastic injection molding is an extremely versatile, preferred method of producing plastic parts because it is ex­tremely efficient. In the business of injection molding, it is important to have machines and tools that work prop­erly to get the job done. One such tool is the mold, which forms high quality plastic parts. The main objective of this project is to refurbish the current Frisbee mold to create promotional products for PSU’s Department of Engineering Technology. Parts were created with the existing mold to determine what issues needed to be ad­dressed, including: excessive flash on the parts ...


Anisotropy In Impact Toughness Of Powder Bed Fused Aisi 304l Stainless Steel, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk Mar 2019

Anisotropy In Impact Toughness Of Powder Bed Fused Aisi 304l Stainless Steel, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The current effort involved investigation into the anisotropy of AISI 304L fabricated through laser powder bed fusion. Charpy V‐notch specimens made from material fabricated at three different build orientations were tested and analyzed. A statistically significant difference among the toughness values indicates the presence of anisotropy within the additively manufactured material. While the lowest toughness was found in vertically built specimens, the horizontal specimens were found to exhibit the highest toughness. From the fracture surfaces, an atypical mode of failure was observed. Exclusive crack propagation along the interlayer track boundaries was observed. The toughness variation correlated with the ease ...


Nde In-Process For Metal Parts Fabricated Using Powder Based Additive Manufacturing, Leonard J. Bond, Lucas W. Koester, Hossein Taheri Mar 2019

Nde In-Process For Metal Parts Fabricated Using Powder Based Additive Manufacturing, Leonard J. Bond, Lucas W. Koester, Hossein Taheri

Aerospace Engineering Publications

Ensuring adequate quality for additive manufactured (AM) materials presents unique metrology challenges to the on-line process measurement and nondestructive evaluation (NDE) communities. AM parts now have complex forms that are not possible using subtractive manufacturing and there are moves for their use in safety criticality components. This paper briefly reviews the status, challenges and metrology opportunities throughout the AM process from powder to finished parts. The primary focus is on new acoustic signatures that have been demonstrated to correlate process parameters with on-line measurement for monitoring and characterization during the build. In-process, quantitative characterization and monitoring of material state is ...


An Energy Profile Model For Fused Deposition Modeling 3d Printing Process, Calvin Hawkins Jan 2019

An Energy Profile Model For Fused Deposition Modeling 3d Printing Process, Calvin Hawkins

ROEU 2018-19

This project develops a strategy to monitor and estimate the energy consumption of fused deposition modeling (FDM) additive manufacturing, which will benefit manufacturers and designers seeking to design and manufacture products with minimal energy consumption.


Designing And Redesigning Products, Processes, And Systems For A Helical Economy, Ryan Bradley, Ibrahim S. Jawahir Jan 2019

Designing And Redesigning Products, Processes, And Systems For A Helical Economy, Ryan Bradley, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

The Circular Economy (CE) concept has promised to unlock trillions of dollars in business value while driving a significant reduction in the world’s resource consumption and anthropogenic emissions. However, CE mainly lives in ambiguity in the manufacturing domain because CE does not address the changes needed across all of the fundamental elements of manufacturing: products, processes, and systems. Conceptually, CE is grounded in the concept of closed-loop material flows that fit within ecological limits. This grounding translates into a steady state economy, a result that is not an option for the significant portion of the world living in poverty ...


Ua66/1/5 Ogden College Of Science & Engineering Dean's Office Centers, Wku Archives Jan 2019

Ua66/1/5 Ogden College Of Science & Engineering Dean's Office Centers, Wku Archives

WKU Archives Collection Inventories

Records created by and about centers associated with the Dean's office in the Ogden College of Science & Engineering.


Ua66/2 Ogden College Of Science & Engineering Architectural & Manufacturing Sciences, Wku Archives Jan 2019

Ua66/2 Ogden College Of Science & Engineering Architectural & Manufacturing Sciences, Wku Archives

WKU Archives Collection Inventories

Records created by the Architectural & Manufacturing Sciences.

Files are arranged in the following subseries:

  1. Administration
  2. Publications
  3. Centers & Institutes


Ua66/9/3 Ogden College Of Science & Engineering Engineering Student Organizations, Wku Archives Jan 2019

Ua66/9/3 Ogden College Of Science & Engineering Engineering Student Organizations, Wku Archives

WKU Archives Collection Inventories

Records created by and about Engineering department student organizations.


Rotary Friction Welding Versus Fusion Butt Welding Of Plastic Pipes – Feasibility And Energy Perspective, Ramsey F. Hamade, Tarek R. Andari, Ali H. Ammouri, Ibrahim S. Jawahir Jan 2019

Rotary Friction Welding Versus Fusion Butt Welding Of Plastic Pipes – Feasibility And Energy Perspective, Ramsey F. Hamade, Tarek R. Andari, Ali H. Ammouri, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

According to the Plastics Pipe Institute, butt fusion is the most widely used method for joining lengths of PE pipe and pipe to PE fittings “by heat fusion” (https://plasticpipe.org/pdf/chapter09.pdf). However, butt-welding is not energy-cognizant from the point of view of a phase-change fabrication method. This is because the source of heating is external (heater plate). The initial heating and subsequent maintenance at relatively high temperature (above 200 C for welding of high-density polyethylene pipe) is energy intensive. Rotary friction welding, on the other hand focuses the energy where and when as needed because it uses ...


A Total Life Cycle Approach For Developing Predictive Design Methodologies To Optimize Product Performance, Buddhika M. Hapuwatte, Ibrahim S. Jawahir Jan 2019

A Total Life Cycle Approach For Developing Predictive Design Methodologies To Optimize Product Performance, Buddhika M. Hapuwatte, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

Sustainable products must be designed by considering how design decisions impact their total life cycle (TLC) sustainability content. Even more so important when designing products to incorporate the technological elements of sustainable manufacturing, the 6Rs (Reduce, Reuse, Recycle, Recover, Redesign and Remanufacture), to achieve Circular Economy (CE). This paper presents the preliminary work of an ongoing research project on developing a novel framework incorporating predictive models with TLC considerations. This unique approach develops and integrates models with associated risks, and optimizes for maximizing the sustainability benefits due to design decisions. Such predictive capability is extremely useful for process planning, where ...


Process Sustainability Evaluation For Manufacturing Of A Component With The 6r Application, Ana E. Bonilla Hernández, Tao Lu, Tomas Beno, Claes Fredriksson, Ibrahim S. Jawahir Jan 2019

Process Sustainability Evaluation For Manufacturing Of A Component With The 6r Application, Ana E. Bonilla Hernández, Tao Lu, Tomas Beno, Claes Fredriksson, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

Sustainability in manufacturing can be evaluated at product, process and system levels. The 6R methodology for sustainability enhancement in manufacturing processes includes: reduced use of materials, energy, water and other resources; reusing of products/components; recovery and recycling of materials/components; remanufacturing of products; and redesigning of products to utilize recovered materials/resources. Although manufacturing processes can be evaluated by their productivity, quality and cost, process sustainability assessment makes it a complete evaluation. This paper presents a 6R-based evaluation method for sustainable manufacturing in terms of specific metrics within six major metrics clusters: environmental impact, energy consumption, waste management, cost ...


An Integrated Framework For Solid Modeling And Structural Analysis Of Layered Composites With Defects, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy Jan 2019

An Integrated Framework For Solid Modeling And Structural Analysis Of Layered Composites With Defects, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy

Center for Nondestructive Evaluation Publications

Laminated fiber-reinforced polymer (FRP) composites are widely used in aerospace and automotive industries due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. Non-destructive evaluation (NDE) of composites using ultrasonic testing (UT) can identify the presence of defects. However, manually incorporating the damage in a CAD model of a multi-layered composite structure and evaluating its structural integrity is a tedious process. We have developed an automated framework to create a layered 3D CAD model of a ...