Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Electronic Cvt - Controls, Alec William Hardy, Jessalyn Leora Ann Bernick, Nicholas Esteban Capdevila, Tristan Charles Perry Jul 2019

Electronic Cvt - Controls, Alec William Hardy, Jessalyn Leora Ann Bernick, Nicholas Esteban Capdevila, Tristan Charles Perry

Mechanical Engineering

The following document outlines the design process, manufacturing, and testing of the control system for an electronically controlled continuously variable transmission (ECVT). This control system was integrated into the custom designed and manufactured mechanical transmission system created in parallel by another senior project group. The transmission was designed for use in the Cal Poly Baja SAE vehicle. Through researching customer needs, competition requirements, previous and alternate CVT designs, and vehicle characteristics, we were able to determine the requirements and specifications for our unique system. Input, output, speed, and durability requirements guided our hardware selection. The primary components which comprised our ...


Retaining Ring Material Wear Analysis And Testing, Thomas Headland, Barten Hansen, Austin Fisher, Kevin Hurtado Jun 2019

Retaining Ring Material Wear Analysis And Testing, Thomas Headland, Barten Hansen, Austin Fisher, Kevin Hurtado

Mechanical Engineering

The chemical mechanical planarization (CMP) of wafers for integrated circuits is an essential – yet expensive – step in their manufacture. CMP machine down-time due to the replacement of process consumables, such as wafer retaining rings, is a significant contributor to the process cost. To reduce the operational cost of their CMP machines, Revasum is interested in exploring new designs and materials for wafer retaining rings to increase their operational lifetime. Background research showed that there is currently no suitable method for testing new retaining ring designs and materials for wear characteristics specific to the CMP process. Available wear testing technologies do ...


C6 Wheels, Samuel L. Pizot, Luke Martin, Josh Warner, Jonah Levis Jun 2019

C6 Wheels, Samuel L. Pizot, Luke Martin, Josh Warner, Jonah Levis

Mechanical Engineering

This document details the C6 Wheels project being undertaken for senior design. The objective is to design and manufacture carbon fiber reinforced polymer wheels for the Cal Poly Formula Society of Automotive Engineers (FSAE) team. The wheel shells will be used on FSAE’s competition vehicles. FSAE requested the wheels to improve the handling characteristics of their vehicles by reducing the unsprung and rotational mass. They have attempted carbon fiber wheels previously but have not yet run any on their vehicles. FSAE specifically proposed the design of carbon fiber shells with an aluminum center as opposed to full carbon fiber ...


Cal Poly Satellite Positioning Systems: "Thrust Or Bust!", Josh W. Neiman, Milena A. Milich, Gerardo Ramirez, Joshua A. Tran Jun 2019

Cal Poly Satellite Positioning Systems: "Thrust Or Bust!", Josh W. Neiman, Milena A. Milich, Gerardo Ramirez, Joshua A. Tran

Mechanical Engineering

Satellites need a way to make precise corrections to their orbit and positioning. The purpose of this project is to design a gimbal mechanism for Astranis that orients an ion thruster along a requested vector. The gimbal must produce any vector within a 2.5° cone in a thirty-minute window. Current systems are expensive and not well suited to this application. The design must be operable in a space environment and optimize mass, size, and reliability. Our design toggles between four discrete positions to achieve an average thrust vector. The gimbal accomplishes this using four solenoids that tilt a plate ...


Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz Jun 2019

Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz

Mechanical Engineering

This report provides a comprehensive description of the research, analysis and design work that The Incompressibles have completed thus far in the senior project process. This document includes all the work that The Incompressibles have completed for the team’s Preliminary Design Review (PDR), Critical Design Review (CDR), the work leading up to the 2019 FPVC competiton and the competition results. This report includes the initial research that the team completed for the fluid power competition, first iterations of designs, final iterations of designs, manufacturing results and processes, and finally testing and results from competition. With a new design for ...


Heat: Hydraulic And Electric Animation Team, Tyler J. Couvrette, Michael J. Cain, Sara T. Novell, Dexter K. Yanagisawa Jun 2019

Heat: Hydraulic And Electric Animation Team, Tyler J. Couvrette, Michael J. Cain, Sara T. Novell, Dexter K. Yanagisawa

Mechanical Engineering

Each New Years’ Day, the Cal Poly Rose Float presents a flower-covered float to the world at the Tournament of Roses parade. This floral display, paired with moving mechanical animations, shows off Cal Poly to the world. This project strove to keep Cal Poly on the cutting edge of technology both in parade floats, and in engineering, by creating a completely electric-powered animation system.

To accomplish this, a group of students set out to make the fully electric animation system that can power both the hydraulic and electric mechanisms on the Float. This was accomplished through months of planning and ...


Adapted Trailer Hitching System, Joseph Neil Hearn, Maxwell M. Selna, Maximilian D. Cossalter, Eric B. Ringsrud Jun 2019

Adapted Trailer Hitching System, Joseph Neil Hearn, Maxwell M. Selna, Maximilian D. Cossalter, Eric B. Ringsrud

Mechanical Engineering

This report highlights the entire design process of an adapted trailer hitching system for Taylor Morris: a navy veteran and quadruple amputee. This begins with problem definition through customer and product research. Objectives are generated after the problem is defined and the boundary of the project is set. This outcome of the project focuses on modifications/improvements to the vehicle side of the problem and leaves the trailers untouched. Engineering specifications are developed to constrain the concept design direction, which ultimately dictates the outcome of the final design. The final design is used as a basis to manufacture a structural ...


Insulated Solar Electric Cooker Immersion Heater, Emily Burnside, Kaeley Dicks, Joshua R. Stevens, Brady Banks Jun 2019

Insulated Solar Electric Cooker Immersion Heater, Emily Burnside, Kaeley Dicks, Joshua R. Stevens, Brady Banks

Mechanical Engineering

This report is the final design review (FDR) report for our team completing the Insulated Solar Electric Cooker (ISEC) Immersion Heater mechanical engineering senior project. The goal of this project is to standardize and perform analysis on a preexisting, inexpensive solar-powered immersion heater for cooking use in developing countries, reducing the adverse effects presented by traditional biomass cooking fires. We also designed a manufacturing process to improve repeatability and to reduce labor investment of heater production. The ISEC research team from the California Polytechnic State University Physics Department have been working on the development of this immersion heater and have ...


Commercial Vehicle Research Buggy For Active Driver Assistance Systems, Fernando Mondragon-Cardenas, Nathaniel Mccutcheon Furbeyre, Ricardo Steven Lickiss Tan Iv Jun 2019

Commercial Vehicle Research Buggy For Active Driver Assistance Systems, Fernando Mondragon-Cardenas, Nathaniel Mccutcheon Furbeyre, Ricardo Steven Lickiss Tan Iv

Mechanical Engineering

This is the Final Design Report for Daimtronics, a senior project team sponsored by Professor Charles Birdsong of Cal Poly and by Daimler Trucks North America. This team integrated mechatronic systems into a scale semi-truck chassis using existing mechanical and software systems from three separate Cal Poly senior projects over the recent years: Daimscale, MicroLaren, and ProgreSSIV. The goal was to have a user-friendly platform capable of executing autonomous driving algorithms that are programmable at a high level in Simulink and Robotic Operating System (ROS). Advanced driver assistance and autonomous vehicle algorithms were not within the scope of this project ...


Additive Manufacturing Powder Removal: Viper 2.0, Andrew D. Epperson, Sean Mccracken, Melissa O'Neil, Alex Ward Jun 2019

Additive Manufacturing Powder Removal: Viper 2.0, Andrew D. Epperson, Sean Mccracken, Melissa O'Neil, Alex Ward

Mechanical Engineering

This report presents the final design review of this senior project team. The project is being sponsored by Lawrence Livermore National Laboratory, a federal design agency. Lawrence Livermore National Laboratory is interested in improving their metal additive manufacturing process. The goal of this senior project is to improve the efficiency and safety of a method currently being used to remove metal powders for additively manufactured components. A senior project team in 2017-2018 created the Vibration Induced Powder Evacuator and Reclaimer (VIPER), a device that uses a vibration motor to shake a printed part until it is clean from excess powder ...


Gravity Drip Irrigation System, Ryan C. Waldron, Cole R. Presson, Josh L. Plaskett Jun 2019

Gravity Drip Irrigation System, Ryan C. Waldron, Cole R. Presson, Josh L. Plaskett

Mechanical Engineering

A gravity-fed, drip irrigation system prototype has been developed for use in raised garden beds and other small-scale crop irrigation applications. The original developer of the prototype and sponsor of the project, Tina Creel, is seeking to refine it into a functional consumer product through the implementation of technical engineering and standard manufacturing processes. The scope of the project includes the tank support system and supply of water to the sponsors current piping subsystem. It does not include any modifications to the bed, piping system or water tank itself. The target specifications of the system include its load capacity, dimensions ...


Adaptive Paddle Board, Alexander Holthaus, Alexander Holthaus, Garrett Holmes, Garett Jones Jun 2019

Adaptive Paddle Board, Alexander Holthaus, Alexander Holthaus, Garrett Holmes, Garett Jones

Mechanical Engineering

This Final Design Review (FDR) document outlines the Adaptive Paddle Board senior project, done by four Mechanical Engineering Students at California Polytechnic State University and provides detail on the project and what the team has accomplished. The goal was to create a universally adaptive paddle board that can be used by the Central California Adaptive Sports Center for a wide range of persons with disabilities. This document highlights current research from patents and existing products, details regarding customer specifications, results from concept generation, the manufacturing and testing that went into the final design, and the process taken to get there ...


Human Powered Vehicle Trainer, Nicholas Hung Nguyen, Gregory Reece Bridges, Jacinta Garcia, Mitchell Sidney Smith Jun 2019

Human Powered Vehicle Trainer, Nicholas Hung Nguyen, Gregory Reece Bridges, Jacinta Garcia, Mitchell Sidney Smith

Mechanical Engineering

This Final Design Review (FDR) document describes the final design and completed prototype of a Mechanical Engineering senior project team at California Polytechnic State University, San Luis Obispo. The project goal is to create an adjustable human powered vehicle training bike for George Leone that allows a rider to gain confidence with the unique reclined bike geometry ahead of the World Human Powered Speed Challenge at Battle Mountain, Nevada. This document outlines the customer’s needs and technical research performed which together determine the project’s scope and engineering specifications. Next, we present the initial idea generation process and its ...


Uav Catapult, Sean Drew Huxley, Benjamin Richard Lacasse, David Matthew Garcia, Jordan Joseph Cearns Jun 2019

Uav Catapult, Sean Drew Huxley, Benjamin Richard Lacasse, David Matthew Garcia, Jordan Joseph Cearns

Mechanical Engineering

This document outlines the Senior Design Project proposed by Dr. Aaron Drake that was assigned to a team of Mechanical Engineering students at California Polytechnic State University, San Luis Obispo. The purpose of this project was to design, build, test, and finalize a launching system for two small, fixed wing, unmanned aerial vehicles (UAVs) owned by Dr. Drake and Cal Poly. The goal was to create a system that was both portable and reliable to use, only requiring a two-person team to use effectively in the field. The most important design requirements were determined to be the launch speed, assembly ...


Autonomous Vehicles Operating Collaboratively To Avoid Debris And Obstructions, Toan T. Le, Cole W. Oppenheim, James H. Gildart, Kyle M. Bybee May 2019

Autonomous Vehicles Operating Collaboratively To Avoid Debris And Obstructions, Toan T. Le, Cole W. Oppenheim, James H. Gildart, Kyle M. Bybee

Mechanical Engineering

The purpose of this project is to demonstrate the safety and increased fuel efficiency of an automated collision avoidance system in collaborative vehicle platooning. This project was cosponsored by Daimler Trucks North America headquartered in Portland, Oregon, as well as Dr. Birdsong, and Dr. DeBruhl of Cal Poly. The mechanical engineering team consists of Cole Oppenheim, James Gildart, Toan Le, and Kyle Bybee who worked in coordination with a team of computer engineers. Vehicle platooning is a driving technique to increase the fuel efficiency of a group of vehicles by following a lead vehicle closely to reduce the drag experienced ...


Framed Human Powered Vehicle Frame, Keyanna Brielle Henderson, Brendon Howard Morey, Kyra Noelle Schmidt, Austin Patrick Henry May 2019

Framed Human Powered Vehicle Frame, Keyanna Brielle Henderson, Brendon Howard Morey, Kyra Noelle Schmidt, Austin Patrick Henry

Mechanical Engineering

The following is the Final Design Review (FDR) Report for Framed, a team tasked with designing and fabricating the frame of the 2018-2019 Cal Poly Human Powered Vehicle (HPV) Club bike. The bike is to be raced at the 2019 World Human Powered Speed Challenge in Battle Mountain, Nevada with the goal of breaking the American collegiate speed record. The purpose of the FDR Report is to introduce the project’s background and objectives, discuss the final design, and present the results of manufacturing and testing. Prior to beginning work on the design of the frame, the group conducted extensive ...


Go With The Flow, Scott Weinhardt, Priscilla Ng, Ben Rydberg, Ritika Makhijani May 2019

Go With The Flow, Scott Weinhardt, Priscilla Ng, Ben Rydberg, Ritika Makhijani

Mechanical Engineering

This Final Design Review (FDR) report outlines the Fuel System Flow Analysis senior project completed by the presenters listed. Included is research about Solar Turbines’ needs, and objectives for our project, our design decision process and final design, manufacturing, design verification report, final results, and suggestions moving forward with this experiment. The goal of the project is to identify stable pressure fields throughout the Solar Turbines fuel delivery system. Specifically, the optimal placement for taking measurements downstream of the main and pilot fuel control valves. The data is used to validate the accuracy of computational fluid dynamic (CFD) models that ...


Universal Bike Suspension Design, Ernesto Huerta, Gregory Ryan Ritter, Chris Michael Fedor, Michael Wu May 2019

Universal Bike Suspension Design, Ernesto Huerta, Gregory Ryan Ritter, Chris Michael Fedor, Michael Wu

Mechanical Engineering

Cal Poly Bike Builders (CPBB) is a student club at Cal Poly helping students design and fabricate their own bicycles. Currently, club members build rigid frames and mountain bikes with only front-suspension–commonly referred to as a “hardtail”. As more students join the club, interest grows in building full-suspension mountain bikes (FSMTB). Designing and manufacturing a mountain bike rear-suspension system requires a diverse skillset and a substantial time commitment. As a result, individual efforts building FSMTB have proven unsuccessful. The scope of this project is to develop a defined method and necessary tools such that all CPBB members can efficiently ...


Danny’S Recumbent Bike Accessibility Device Final Design Report, Joseph J. Lee, Huy Nguyen, Jack Mcatee, John Kulick May 2019

Danny’S Recumbent Bike Accessibility Device Final Design Report, Joseph J. Lee, Huy Nguyen, Jack Mcatee, John Kulick

Mechanical Engineering

The purpose of this document is to fully define our design solution and explain our manufacturing and testing results. Our project’s goal is to find a way to allow Danny Knutson, a retired Navy pilot and incomplete quadriplegic with limited use of his arms and an impaired sense of balance, to enter and exit his recumbent tricycle without any discomfort for him or his aide. We completed multiple interviews with Danny, patent research, existing product research, and other technical literature research in order to fully understand the problem. We synthesized this information to create a concrete list of customer ...


High Strollers, Braeden Hammond, Morley Perrin, Reid Bartels, Juan Rodriguez May 2019

High Strollers, Braeden Hammond, Morley Perrin, Reid Bartels, Juan Rodriguez

Mechanical Engineering

This report documents the final product of Jonathon’s new lightweight stroller. The Mechanical Engineering team from Cal Poly, High Strollers, began the project to create a lightweight stroller for the project sponsor, Nina Aguayo, and her son, Jonathon Aguayo, in Fall of 2018. Jonathon is diagnosed with Delayed Brain Development and Hypotonia with some characteristics of Cerebral Palsy. He has a 50lb high intensity stroller to go to and from school. Mrs. Aguayo needed a stroller that is easier to transport while still meeting all of Jonathon’s needs. The re-designed stroller will make leisurely outings for Mrs. Aguayo ...


Duocel Metal Foam Display Cases, Kate Goldsworthy, Katherina Prodanov, Benjamin Swanson, Syed Hasan May 2019

Duocel Metal Foam Display Cases, Kate Goldsworthy, Katherina Prodanov, Benjamin Swanson, Syed Hasan

Mechanical Engineering

This Final Design Review (FDR) report outlines the senior design project that was conducted by a team of four mechanical engineering students at California Polytechnic State University-San Luis Obispo for ERG Materials and Aerospace Corporation. The goal of this project was to design displays that showcase the properties of ERG’s Duocel® foam at tradeshows and client meetings. To better understand the needs of our sponsor, the team researched Duocel®’s capabilities, related technologies, and relevant standards and regulations. With this information, we further defined the problem by creating a problem statement and a set of engineering specifications through a ...


Final Design Report For Human Powered Vehicle Drivetrain Project, Derek Fromm, Luke Opitz, Michael Juri, Olivier Côté May 2019

Final Design Report For Human Powered Vehicle Drivetrain Project, Derek Fromm, Luke Opitz, Michael Juri, Olivier Côté

Mechanical Engineering

The Cal Poly Human Powered Vehicle Club is building a bike to surpass 61.3 mph in 2019. The club and their mentor, George Leone, have proposed a senior project to design, build, and test the drivetrain for this year’s human powered vehicle. Research into human powered vehicles and their drivetrains has shown that the power that a rider can output and the efficiency at which the rider can pedal depend extensively on the design of the drivetrain. Despite the existence of standard bicycle drivetrain designs, the senior project team has found that the best design to meet the ...


Torsional Stiffness Of A Race Car, Reiley A. Schraeger, Cameron Kao, Raymond Deng, Omar Roman Mar 2019

Torsional Stiffness Of A Race Car, Reiley A. Schraeger, Cameron Kao, Raymond Deng, Omar Roman

Mechanical Engineering

Torsional stiffness plays a major role in any road vehicle. To understand torsional stiffness of a vehicle and make future iterations and improvements, a proper torsional stiffness jig is required to prove accurate and useful data. This report encompasses the new and improved testing jig and potential improvement ideas for more accurate results. With real data result relating to FEA calculations, designers can be confident in the FEA changes to torsional stiffness is accurate and will yield the probably results they desired. This report shows the methodology, manufacturing process and testing procedure to use on any Baja or SAE vehicle ...


Final Design Review: Wear Test Machine, Justin Ju-Han Hou, Abraham Jack Mitchell, Alexandra Denae Pavano, Jahyun Kaylla Son Mar 2019

Final Design Review: Wear Test Machine, Justin Ju-Han Hou, Abraham Jack Mitchell, Alexandra Denae Pavano, Jahyun Kaylla Son

Mechanical Engineering

A California Polytechnic State University Senior Project team has been tasked by Marvin Engineering Co. to design and build a friction wear test fixture; the fixture is to characterize the coefficient of friction and potential friction wear of various industry adopted metal pairings in an oxygen-free environment. This final design review serves to document project research, full design process, method of operation of final product, and a comprehensive testing procedure.

The R&D department at Marvin Engineering Co. proposed this investigation in order to explore the phenomenon of friction and adhesive wear, specifically the occurrence of galling between stainless steel ...


Cal Poly Supermileage Electric Vehicle Drivetrain And Motor Control Design, Clarisa Joy Howe, Christopher Joseph Mclaughlin, Erik Alvarado, Enyi Liang Mar 2019

Cal Poly Supermileage Electric Vehicle Drivetrain And Motor Control Design, Clarisa Joy Howe, Christopher Joseph Mclaughlin, Erik Alvarado, Enyi Liang

Mechanical Engineering

The Cal Poly Supermileage Vehicle team is a multidisciplinary club that designs and builds high efficiency vehicles to compete internationally at Shell Eco-Marathon (SEM). Cal Poly Supermileage Club has been competing in the internal combustion engine (ICE) category of the competition since 2007. The club has decided it is time to expand their competition goals and enter their first battery electric prototype vehicle. To this end, a yearlong senior design project was presented to this team of engineers giving us the opportunity to design an electric powertrain with a custom motor controller. This system has been integrated into Ventus, the ...


Surf Leg, Samantha Campbell, Oyundari Altansukh, Caroline Swanson, Kurtis Barth Jan 2019

Surf Leg, Samantha Campbell, Oyundari Altansukh, Caroline Swanson, Kurtis Barth

Mechanical Engineering

The Surf Leg Prosthetic project team in conjunction with QL+ and Operation Surf designed a transtibial prosthetic to be used for surfing. The senior project team focused on the missions of QL+ and Operation Surf as they went through the design process during the 2018-2019 academic year. The problem solved was that a standard prosthetic for a transtibial amputee does not provide the flexibility in enough degrees of freedom for a user to squat and balance on a surfboard. The goal of this project was to create a device specifically designed to improve the user’s balance and control while ...


Ares Cleaning System, Andy Sagers, John Cunningham, Peter Greig, Jack Glynn Jan 2019

Ares Cleaning System, Andy Sagers, John Cunningham, Peter Greig, Jack Glynn

Mechanical Engineering

In this Final Design Review, the team outlines the general scope of the ARES Cleaning System project and the final design direction chosen and built. This team consists of a group of four mechanical engineering students who have been tasked with designing and manufacturing an autonomous ARES cleaning system to help their sponsor, Fracsun, better track soiling losses measured at large solar arrays. They designed, conceptualized, manufactured, and tested throughout the project as they looked to create a final, functioning product. In creating this Final Design Review, they have identified how the product will perform the desired functions and what ...