Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

ECU Publications Post 2013

Microstructure

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Nanoindentation Characterization On Local Plastic Response Of Ti-6al-4v Under High-Load Spherical Indentation, Yan Wen, Lechun Xie, Zhou Wang, Liqiang Wang, Weijie Lu, Laichang Zhang Jan 2019

Nanoindentation Characterization On Local Plastic Response Of Ti-6al-4v Under High-Load Spherical Indentation, Yan Wen, Lechun Xie, Zhou Wang, Liqiang Wang, Weijie Lu, Laichang Zhang

ECU Publications Post 2013

After high-load spherical indentation treatment, the variations of hardness on the plastic zone of Ti-6Al-4V were investigated via nanoindentation method. The hardness within the center of plastic zone was measured by nanoindenter, and the magnitude decreased gradually along the depth, which were caused by the different extent of plastic deformation under the residual imprint. The microstructure of indentation were observed using scanning electron microscope (SEM) before and after surface etching, and the results showed that the microhardness revealed the average hardness of α and β phases of Ti-6Al-4V. The maximum hardness reached 6.438 GPa in the depth of 132 ...


Particle Size-Dependent Microstructure, Hardness And Electrochemical Corrosion Behavior Of Atmospheric Plasma Sprayed Nicrbsi Coatings, Peng Sang, Liang-Yu Chen, Cuihua Zhao, Ze-Xin Wang, Haiyang Wang, Sheng Lu, Dongpo Song, Jia-Huan Xu, Lai-Chang Zhang Jan 2019

Particle Size-Dependent Microstructure, Hardness And Electrochemical Corrosion Behavior Of Atmospheric Plasma Sprayed Nicrbsi Coatings, Peng Sang, Liang-Yu Chen, Cuihua Zhao, Ze-Xin Wang, Haiyang Wang, Sheng Lu, Dongpo Song, Jia-Huan Xu, Lai-Chang Zhang

ECU Publications Post 2013

Particle size is a critical consideration for many powder coating-related industries since it significantly influences the properties of the produced materials. However, the effect of particle size on the characteristics of plasma sprayed NiCrBSi coatings is not well understood. This work investigates the microstructures, hardness and electrochemical corrosion behavior of plasma sprayed NiCrBSi coatings synthesized using different-sized powders. All coatings mainly consist of Ni, N3B, CrB, Cr7C3 and Cr3C2 phases. The coatings produced by small particles (50–75 μm) exhibit lower porosity (2.0 ± 0.8%). Such coatings show a higher fraction (15.5 vol.%) of the amorphous phase and ...


Beta-Type Ti-Nb-Zr-Cr Alloys With Large Plasticity And Significant Strain Hardening, Syed F. Jawed, Chirag D. Rabadia, Y. J. Liu, L. Q. Wang, Y. H. Li, X. H. Zang, Laichang C. Zhang Jan 2019

Beta-Type Ti-Nb-Zr-Cr Alloys With Large Plasticity And Significant Strain Hardening, Syed F. Jawed, Chirag D. Rabadia, Y. J. Liu, L. Q. Wang, Y. H. Li, X. H. Zang, Laichang C. Zhang

ECU Publications Post 2013

A series of Ti-25Nb-8Zr-xCr (x = 0, 2, 4, 6, 8 wt%) alloys were designed based on DV-Xα cluster method and e=a-Δr diagram with an anticipation to obtain high plasticity and significant strain hardening. The designed alloys were produced through cold crucible levitation melting technique in order to effectively investigate their micro-structures and mechanical properties. The addition of Cr significantly enhances the β stability in the microstructures of the Ti-25Nb-8Zr-xCr alloys. Both yield strength and hardness of the studied alloys increase due to the effect of solid-solution strengthening. By contrast, the plasticity, maximum strength and strain hardening rate are influenced ...


Phase Separation And Enhanced Wear Resistance Of Cu88fe12 Immiscible Coating Prepared By Laser Cladding, Shuzhen Zhao, Shengfeng Zhou, Min Xie, Xiaoqin Dai, Dongchu Chen, Laichang Zhang Jan 2019

Phase Separation And Enhanced Wear Resistance Of Cu88fe12 Immiscible Coating Prepared By Laser Cladding, Shuzhen Zhao, Shengfeng Zhou, Min Xie, Xiaoqin Dai, Dongchu Chen, Laichang Zhang

ECU Publications Post 2013

In order to eliminate the microstructure segregation of Cu–Fe immiscible alloys which characterized with a liquid miscible gap, the Cu88Fe12 (wt.%) immiscible coating was prepared by laser cladding. The phase separation characteristic and wear resistance of the Cu88Fe12 (wt.%) immiscible coating were also investigated. The results show that the size of the milled Cu88Fe12 composite powder is reduced comparing to that of the un-milled powder due to fracturing during mechanical milling. Moreover, the demixing or delamination disappears in the Cu88Fe12 immiscible coating and a large amount of face-centered-cubic (fcc) γ-Fe and body-centered-cubic (bcc) α-Fe particles are dispersed in the ...