Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Australian Institute for Innovative Materials - Papers

100%

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Perovskite R3c Phase Agcuf3: Multiple Dirac Cones, 100% Spin Polarization And Its Thermodynamic Properties, Minquan Kuang, Tingzhou Li, Zhenxiang Cheng, Houari Khachai, Rabah Khenata, Tie Yang, Tingting Lin, Xiaotian Wang Jan 2019

Perovskite R3c Phase Agcuf3: Multiple Dirac Cones, 100% Spin Polarization And Its Thermodynamic Properties, Minquan Kuang, Tingzhou Li, Zhenxiang Cheng, Houari Khachai, Rabah Khenata, Tie Yang, Tingting Lin, Xiaotian Wang

Australian Institute for Innovative Materials - Papers

Very recently, experimentally synthesized R3c phase LaCuO3 was studied by Zhang, Jiao, Kou, Liao & Du [J. Mater. Chem. C (2018), 6, 6132-6137], and they found that this material exhibits multiple Dirac cones in its non-spin-polarized electronic structure. Motivated by this study, the focus here is on a new R3c phase material, AgCuF3, which has a combination of multiple Dirac cones and 100% spin polarization properties. Compared to the non-spin-polarized system LaCuO3, the spin-polarized Dirac behavior in AgCuF3 is intrinsic. The effects of on-site Coulomb interaction, uniform strain and spin-orbit coupling were added to examine the stability of its multiple Dirac ...