Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Characterization And Computational Modelling For The Garnet Oxide Solid State Electrolyte Ta-Llzo, Colin A. Versnick Dec 2019

Characterization And Computational Modelling For The Garnet Oxide Solid State Electrolyte Ta-Llzo, Colin A. Versnick

Electronic Thesis and Dissertation Repository

The all-solid-state-battery (ASSB) serves as a promising candidate for next generation lithium ion batteries for significant improvements in battery safety, capacity, and longevity. Of the material candidates researched to replace the conventionally used liquid electrolyte, the garnet oxide Ta-LLZO (Li6.4La3Zr1.4Ta0.6O12) has received much attention thanks to its high chemical and electrochemical stability, and ionic conductivity which rivals that of liquid electrolytes. While much investigation has taken place regarding the electrochemical performance of Ta-LLZO, much less is known about the micromechanics, including microstructural characterization, stress and strain development, and material failure …


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li Jun 2019

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis, …


Advances In Design Methodology In Swelling Shale Rock In Southern Ontario, Thomas R.A. Lardner Mar 2019

Advances In Design Methodology In Swelling Shale Rock In Southern Ontario, Thomas R.A. Lardner

Electronic Thesis and Dissertation Repository

As infrastructure requirements increase in southern Ontario, excavations within swelling rock formations will become more frequent and larger. The objective of this study is to advance design capability for structures in swelling rock through three aspects: i) developing a practical swelling model for design engineers, ii) investigate two crushable/compressible materials for the mitigation of swelling rock effects, and iii) observe and analyze the behaviour of swelling rock to current excavation techniques.

A swelling rock constitutive model has been developed. The swelling parameters include the horizontal and vertical free swell potential, threshold stress, and critical stress as well as a “pseudo-Poisson’s …


Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash Jan 2019

Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash

Electronic Thesis and Dissertation Repository

The aim of the present research is to understand the bouncing dynamic behavior of NEM/MEM switches in order to improve the switch performance and reliability. It is well known that the bouncing can dramatically degrade the switch performance and life; hence, in the present study, bouncing dynamics of a cantilever-based NME/MEM switch has been studied in detail. To this end, a model of a MEM switch that incorporates electrostatic force, squeeze film air damping force as well as asperity-based contact force has been proposed for an electrostatically actuated switch. An actuation force due to piezoelectric effects is further included in …