Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

A Multi-Sensor Phenotyping System: Applications On Wheat Height Estimation And Soybean Trait Early Prediction, Wenan Yuan Jul 2019

A Multi-Sensor Phenotyping System: Applications On Wheat Height Estimation And Soybean Trait Early Prediction, Wenan Yuan

Biological Systems Engineering--Dissertations, Theses, and Student Research

Phenotyping is an essential aspect for plant breeding research since it is the foundation of the plant selection process. Traditional plant phenotyping methods such as measuring and recording plant traits manually can be inefficient, laborious and prone to error. With the help of modern sensing technologies, high-throughput field phenotyping is becoming popular recently due to its ability of sensing various crop traits non-destructively with high efficiency. A multi-sensor phenotyping system equipped with red-green-blue (RGB) cameras, radiometers, ultrasonic sensors, spectrometers, a global positioning system (GPS) receiver, a pyranometer, a temperature and relative humidity probe and a light detection and ranging (LiDAR ...


In Vivo Human-Like Robotic Phenotyping Of Leaf And Stem Traits In Maize And Sorghum In Greenhouse, Abbas Atefi Jul 2019

In Vivo Human-Like Robotic Phenotyping Of Leaf And Stem Traits In Maize And Sorghum In Greenhouse, Abbas Atefi

Biological Systems Engineering--Dissertations, Theses, and Student Research

In plant phenotyping, the measurement of morphological, physiological and chemical traits of leaves and stems is needed to investigate and monitor the condition of plants. The manual measurement of these properties is time consuming, tedious, error prone, and laborious. The use of robots is a new approach to accomplish such endeavors, which enables automatic monitoring with minimal human intervention. In this study, two plant phenotyping robotic systems were developed to realize automated measurement of plant leaf properties and stem diameter which could reduce the tediousness of data collection compare to manual measurements. The robotic systems comprised of a four degree ...


Image Processing Algorithms For Elastin Lamellae Inside Cardiovascular Arteries, Mahmoud Habibnezhad May 2019

Image Processing Algorithms For Elastin Lamellae Inside Cardiovascular Arteries, Mahmoud Habibnezhad

Computer Science and Engineering: Theses, Dissertations, and Student Research

Automated image processing methods are greatly needed to replace the tedious, manual histology analysis still performed by many physicians. This thesis focuses on pathological studies that express the essential role of elastin lamella in the resilience and elastic properties of the arterial blood vessels. Due to the stochastic nature of the shape and distribution of the elastin layers, their morphological features appear as the best candidates to develop a mathematical formulation for the resistance behavior of elastic tissues. However, even for trained physicians and their assistants, the current measurement procedures are highly error-prone and prolonged. This thesis successfully integrates such ...


A Novel Method Of Near-Miss Event Detection With Software Defined Radar In Improving Railyard Safety, Subharthi Banerjee, Jose Santos, Michael Hempel, Pejman Ghasemzadeh, Hamid Sharif Jan 2019

A Novel Method Of Near-Miss Event Detection With Software Defined Radar In Improving Railyard Safety, Subharthi Banerjee, Jose Santos, Michael Hempel, Pejman Ghasemzadeh, Hamid Sharif

Faculty Publications from the Department of Electrical and Computer Engineering

Railyards are one of the most challenging and complex workplace environments in any industry. Railyard workers are constantly surrounded by dangerous moving objects, in a noisy environment where distractions can easily result in accidents or casualties. Throughout the years, yards have been contributing 20–30% of the total accidents that happen in railroads. Monitoring the railyard workspace to keep personnel safe from falls, slips, being struck by large object, etc. and preventing fatal accidents can be particularly challenging due to the sheer number of factors involved, such as the need to protect a large geographical space, the inherent dynamicity of ...


Multi-Pig Part Detection And Association With A Fully-Convolutional Network, Eric T. Psota, Mateusz Mittek, Lance C. Pérez, Ty Schmidt, Benny Mote Jan 2019

Multi-Pig Part Detection And Association With A Fully-Convolutional Network, Eric T. Psota, Mateusz Mittek, Lance C. Pérez, Ty Schmidt, Benny Mote

Faculty Publications from the Department of Electrical and Computer Engineering

Computer vision systems have the potential to provide automated, non-invasive monitoring of livestock animals, however, the lack of public datasets with well-defined targets and evaluation metrics presents a significant challenge for researchers. Consequently, existing solutions often focus on achieving task-specific objectives using relatively small, private datasets. This work introduces a new dataset and method for instance-level detection of multiple pigs in group-housed environments. The method uses a single fully-convolutional neural network to detect the location and orientation of each animal, where both body part locations and pairwise associations are represented in the image space. Accompanying this method is a new ...