Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

University of Nebraska - Lincoln

Papers from the Nebraska Center for Biotechnology

Articles 1 - 2 of 2

Full-Text Articles in Engineering

The Small Rna Teg41 Regulates Expression Of The Alpha Phenol-Soluble Modulins And Is Required For Virulence In Staphylococcus Aureus, Rachel L. Zapf, Richard E. Wiemels, Rebecca A. Keogh, Donald L. Holzschu, Kayla M. Howell, Emily Trzeciak, Andrew R. Caillet, Kellie A. King, Samantha A. Selhorst, Michael J. Naldrett, Jeffrey L. Bose, Ronan K. Carroll Jan 2019

The Small Rna Teg41 Regulates Expression Of The Alpha Phenol-Soluble Modulins And Is Required For Virulence In Staphylococcus Aureus, Rachel L. Zapf, Richard E. Wiemels, Rebecca A. Keogh, Donald L. Holzschu, Kayla M. Howell, Emily Trzeciak, Andrew R. Caillet, Kellie A. King, Samantha A. Selhorst, Michael J. Naldrett, Jeffrey L. Bose, Ronan K. Carroll

Papers from the Nebraska Center for Biotechnology

Small RNAs (sRNAs) remain an understudied class of regulatory molecules in bacteria in general and in Gram-positive bacteria in particular. In the major human pathogen Staphylococcus aureus, hundreds of sRNAs have been identified; however, only a few have been characterized in detail. In this study, we investigate the role of the sRNA Teg41 in S. aureus virulence. We demonstrate that Teg41, an sRNA divergently transcribed from the locus that encodes the cytolytic alpha phenolsoluble modulin (αPSM) peptides, plays a critical role in αPSM production. Overproduction of Teg41 leads to an increase in αPSM levels and a corresponding increase in hemolytic ...


Terpene Synthase Genes Originated From Bacteria Through Horizontal Gene Transfer Contribute To Terpenoid Diversity In Fungi, Qidong Jia, Xinlu Chen, Tobias G. Kollner, Jan Rinkel, Jianyu Fu, Jessy Labbe, Wangdan Xiong, Jeroen S. Dickschat, Jonathan Gershenzon, Feng Chen Jan 2019

Terpene Synthase Genes Originated From Bacteria Through Horizontal Gene Transfer Contribute To Terpenoid Diversity In Fungi, Qidong Jia, Xinlu Chen, Tobias G. Kollner, Jan Rinkel, Jianyu Fu, Jessy Labbe, Wangdan Xiong, Jeroen S. Dickschat, Jonathan Gershenzon, Feng Chen

Papers from the Nebraska Center for Biotechnology

Fungi are successful eukaryotes of wide distribution. They are known as rich producers of secondary metabolites, especially terpenoids, which are important for fungi-environment interactions. Horizontal gene transfer (HGT) is an important mechanism contributing to genetic innovation of fungi. However, it remains unclear whether HGT has played a role in creating the enormous chemical diversity of fungal terpenoids. Here we report that fungi have acquired terpene synthase genes (TPSs), which encode pivotal enzymes for terpenoid biosynthesis, from bacteria through HGT. Phylogenetic analysis placed the majority of fungal and bacterial TPS genes from diverse taxa into two clades, indicating ancient divergence. Nested ...