Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Portland State University

Machine learning

Computer Sciences

Articles 1 - 3 of 3

Full-Text Articles in Engineering

An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza Dec 2019

An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza

Dissertations and Theses

Food wastage is a problem that affects all demographics and regions of the world. Each year, approximately one-third of food produced for human consumption is thrown away. In an effort to track and reduce food waste in the commercial sector, some companies utilize third party devices which collect data to analyze individual contributions to the global problem. These devices track the type of food wasted (such as vegetables, fruit, boneless chicken, pasta) along with the weight. Some devices also allow the user to leave the food in a kitchen container while it is weighed, so the container weight must also ...


Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher May 2019

Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher

Student Research Symposium

In machine learning research, adversarial examples are normal inputs to a classifier that have been specifically perturbed to cause the model to misclassify the input. These perturbations rarely affect the human readability of an input, even though the model’s output is drastically different. Recent work has demonstrated that image-classifying deep neural networks (DNNs) can be reliably fooled with the modification of a single pixel in the input image, without knowledge of a DNN’s internal parameters. This “one-pixel attack” utilizes an iterative evolutionary optimizer known as differential evolution (DE) to find the most effective pixel to perturb, via the ...


Spectral Clustering For Electrical Phase Identification Using Advanced Metering Infrastructure Voltage Time Series, Logan Blakely Jan 2019

Spectral Clustering For Electrical Phase Identification Using Advanced Metering Infrastructure Voltage Time Series, Logan Blakely

Dissertations and Theses

The increasing demand for and prevalence of distributed energy resources (DER) such as solar power, electric vehicles, and energy storage, present a unique set of challenges for integration into a legacy power grid, and accurate models of the low-voltage distribution systems are critical for accurate simulations of DER. Accurate labeling of the phase connections for each customer in a utility model is one area of grid topology that is known to have errors and has implications for the safety, efficiency, and hosting capacity of a distribution system. This research presents a methodology for the phase identification of customers solely using ...