Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Application Of Artificial Neural Networks In The Drilling Processes: Can Equivalent Circulation Density Be Estimated Prior To Drilling?, Husam Hasan Alkinani, Abo Taleb Al-Hameedi, Shari Dunn-Norman, David Lian Dec 2019

Application Of Artificial Neural Networks In The Drilling Processes: Can Equivalent Circulation Density Be Estimated Prior To Drilling?, Husam Hasan Alkinani, Abo Taleb Al-Hameedi, Shari Dunn-Norman, David Lian

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

As the drilling environment became more challenging nowadays, managing equivalent circulating density (ECD) is a key factor to minimize non-productive time (NPT) due to many drilling obstacles such as stuck pipe, formation fracturing, and lost circulation. The goal of this work was to predict ECD prior to drilling by using artificial neural network (ANN). Once ECD is recognized, the crucial drilling variables impact ECD can be modified to control ECD within the acceptable ranges. Data from over 2000 wells collected worldwide were used in this study to create an ANN to predict ECD prior to drilling. Into training, validation, and ...


Data-Driven Integral Reinforcement Learning For Continuous-Time Non-Zero-Sum Games, Yongliang Yang, Liming Wang, Hamidreza Modares, Dawei Ding, Yixin Yin, Donald C. Wunsch Jun 2019

Data-Driven Integral Reinforcement Learning For Continuous-Time Non-Zero-Sum Games, Yongliang Yang, Liming Wang, Hamidreza Modares, Dawei Ding, Yixin Yin, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

This paper develops an integral value iteration (VI) method to efficiently find online the Nash equilibrium solution of two-player non-zero-sum (NZS) differential games for linear systems with partially unknown dynamics. To guarantee the closed-loop stability about the Nash equilibrium, the explicit upper bound for the discounted factor is given. To show the efficacy of the presented online model-free solution, the integral VI method is compared with the model-based off-line policy iteration method. Moreover, the theoretical analysis of the integral VI algorithm in terms of three aspects, i.e., positive definiteness properties of the updated cost functions, the stability of the ...


Mud Loss Estimation Using Machine Learning Approach, Abo Taleb T. Al-Hameedi, Husam H. Alkinani, Shari Dunn-Norman, Ralph E. Flori, Steven Austin Hilgedick, Ahmed S. Amer, Mortadha Alsaba Jun 2019

Mud Loss Estimation Using Machine Learning Approach, Abo Taleb T. Al-Hameedi, Husam H. Alkinani, Shari Dunn-Norman, Ralph E. Flori, Steven Austin Hilgedick, Ahmed S. Amer, Mortadha Alsaba

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Lost circulation costs are a significant expense in drilling oil and gas wells. Drilling anywhere in the Rumaila field, one the world's largest oilfields, requires penetrating the Dammam formation, which is notorious for lost circulation issues and thus a great source of information on lost circulation events. This paper presents a new, more precise model to predict lost circulation volumes, equivalent circulation density (ECD), and rate of penetration (ROP) in the Dammam formation. A larger data set, more systematic statistical approach, and a machine-learning algorithm have produced statistical models that give a better prediction of the lost circulation volumes ...


Less Is More: Beating The Market With Recurrent Reinforcement Learning, Louis Kurt Bernhard Steinmeister Jan 2019

Less Is More: Beating The Market With Recurrent Reinforcement Learning, Louis Kurt Bernhard Steinmeister

Masters Theses

"Multiple recurrent reinforcement learners were implemented to make trading decisions based on real and freely available macro-economic data. The learning algorithm and different reinforcement functions (the Differential Sharpe Ratio, Differential Downside Deviation Ratio and Returns) were revised and the performances were compared while transaction costs were taken into account. (This is important for practical implementations even though many publications ignore this consideration.) It was assumed that the traders make long-short decisions in the S&P500 with complementary 3-month treasury bill investments. Leveraged positions in the S&P500 were disallowed. Notably, the Differential Sharpe Ratio and the Differential Downside Deviation Ratio ...


Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu Jan 2019

Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu

Doctoral Dissertations

"The current business model for many industrial firms is to function as system integrators, depending on numerous outsourced components from outside component suppliers. This practice has resulted in tremendous cost savings; it makes system reliability analysis, however, more challenging due to the limited component information available to system designers. The component information is often proprietary to component suppliers. Motivated by the need of system reliability prediction with outsourced components, this work aims to explore feasible ways to accurately predict the system reliability during the system design stage. Four methods are proposed. The first method reconstructs component reliability functions using limited ...


Building Shared Knowledge For Eor Technologies: Screening Guideline Constructions, Dashboards, And Advanced Data Analysis, Na Zhang Jan 2019

Building Shared Knowledge For Eor Technologies: Screening Guideline Constructions, Dashboards, And Advanced Data Analysis, Na Zhang

Doctoral Dissertations

"Successful implementation of enhanced oil recovery (EOR) technology requires comprehensive knowledge and experiences based on existing EOR projects. EOR screening guidelines and EOR reservoir analog are served as such knowledge which are considered as the first step for a reservoir engineer to determine the next step techniques to improve the ultimate oil recovery from their assets. The objective of this research work is to provide better assistance for EOR selection by using fundamental statistics methods and machine learning techniques.

In this dissertation, a total of 977 worldwide EOR projects with the most uniformed, high-quality, and comprehensive information were collected from ...


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans ...