Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Hydration Of Binary Portland Cement Blends Containing Silica Fume: A Decoupling Method To Estimate Degrees Of Hydration And Pozzolanic Reaction, Wenyu Liao, Xiao Sun, Aditya Kumar, Hongfang Sun, Hongyan Ma Apr 2019

Hydration Of Binary Portland Cement Blends Containing Silica Fume: A Decoupling Method To Estimate Degrees Of Hydration And Pozzolanic Reaction, Wenyu Liao, Xiao Sun, Aditya Kumar, Hongfang Sun, Hongyan Ma

Materials Science and Engineering Faculty Research & Creative Works

Determination of degrees of hydration/reaction of components of blended cementitious systems (i. e., cement and SCMs: supplementary cementitious materials) is essential to estimate the systems' properties. Although the best methods for determining degrees of reaction of different SCMs have been recommended by RILEM TC238, they rely on either expensive equipment (e.g., nuclear magnetic resonance) or time-consuming sample preparation and data processing (e.g., backscattered electron image analysis). Furthermore, these methods cannot simultaneously characterize degree of hydration of cement and degree of reaction of SCMs. A novel decoupling method, which can simultaneously estimate the degree of hydration of cement ...


Seismicity Enhances Macrodispersion In Finite Porous And Fractured Domains: A Pore-Scale Perspective, Lizhi Zheng, Lichun Wang, Wen Deng Feb 2019

Seismicity Enhances Macrodispersion In Finite Porous And Fractured Domains: A Pore-Scale Perspective, Lizhi Zheng, Lichun Wang, Wen Deng

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Understanding the effects of oscillating flow field induced by seismicity on the transport process is vital for predicting the fate and transport of solute in many dynamic environments. However, there is prominent discrepancy in arguing with the response of dispersion to the oscillating flow field (i.e., the longitudinal dispersion coefficient would decrease, increase, or maintain unchanged). To unravel the underpinning physics about this controversial response, we simulated two-hundred twenty pore-scale numerical experiments for the seismicity-induced oscillating flow field and associated solute transport in the idealized finite porous (i.e., fluidic plate) and fractured (i.e., parallel plates) domains. The ...


Smart Building And Construction Materials, Donglu Shi, Julian Wang, Wen Deng Jan 2019

Smart Building And Construction Materials, Donglu Shi, Julian Wang, Wen Deng

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Advances and innovations in materials science and engineering have always played a substantial role in civil engineering, building structural design, and construction. In recent years, extensive effort has been devoted to the applications of stimuli-responsive smart materials and nanostructures in buildings. These smart materials used in the built environment can be defined as those offering specific functional and adaptable properties in response to thermal, optical, structural, and environmental stimuli. Not only do these materials enhance the overall performance of new building construction but also promise safer structures, longer durability of building elements, efficient building energy savings, greater environmental sustainability, and ...