Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu Jan 2019

Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu

Doctoral Dissertations

"The current business model for many industrial firms is to function as system integrators, depending on numerous outsourced components from outside component suppliers. This practice has resulted in tremendous cost savings; it makes system reliability analysis, however, more challenging due to the limited component information available to system designers. The component information is often proprietary to component suppliers. Motivated by the need of system reliability prediction with outsourced components, this work aims to explore feasible ways to accurately predict the system reliability during the system design stage. Four methods are proposed. The first method reconstructs component reliability functions using limited ...


Building Shared Knowledge For Eor Technologies: Screening Guideline Constructions, Dashboards, And Advanced Data Analysis, Na Zhang Jan 2019

Building Shared Knowledge For Eor Technologies: Screening Guideline Constructions, Dashboards, And Advanced Data Analysis, Na Zhang

Doctoral Dissertations

"Successful implementation of enhanced oil recovery (EOR) technology requires comprehensive knowledge and experiences based on existing EOR projects. EOR screening guidelines and EOR reservoir analog are served as such knowledge which are considered as the first step for a reservoir engineer to determine the next step techniques to improve the ultimate oil recovery from their assets. The objective of this research work is to provide better assistance for EOR selection by using fundamental statistics methods and machine learning techniques.

In this dissertation, a total of 977 worldwide EOR projects with the most uniformed, high-quality, and comprehensive information were collected from ...


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans ...