Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Missouri University of Science and Technology

Doctoral Dissertations

Discipline
Keyword

Articles 1 - 30 of 72

Full-Text Articles in Engineering

The Mechanics Of Precision Presplitting, Anthony Joseph Konya Jan 2019

The Mechanics Of Precision Presplitting, Anthony Joseph Konya

Doctoral Dissertations

"Precision Presplitting is a widely used method of presplit blasting for the mining and construction industries. In recent years considerable effort has gone into the development of empirical equations based on field data to be able to better design the Precision Presplit for various rock types and structural environments. However, the most widely discussed theory about the mechanics of the presplit formation, that of shockwave collisions, does not appear to be applicable for this method of presplitting.

This research has disproven this theory based on insufficient magnitude of the shockwave from modeling with basic wave mechanics. Other authors have suggested ...


Transient Multiphase Flow Simulation For Unloading Of Frac Hit Gas Wells, Miguel Angel Cedeno Moreno Jan 2019

Transient Multiphase Flow Simulation For Unloading Of Frac Hit Gas Wells, Miguel Angel Cedeno Moreno

Doctoral Dissertations

"This work seeks to develop a fully step-by-step transient multiphase flow simulation valid for unloading gas wells using nitrogen. It studies the behavior of nitrogen for unloading horizontal gas wells with gas injection in the annulus. The work investigates unloading non-Newtonian fluids such as those which invade offset wells when a frac hit occurs during hydraulic fracturing operations in unconventional wells. The effect of varying tubing depth and injection pressure are included in the study.

Results show that as the plastic viscosity increases, the nitrogen volume and time to unload will be increased. As tubing depth increases, the nitrogen volume ...


Improving Base Metal Electrowinning, Charles Ebenezer Abbey Jan 2019

Improving Base Metal Electrowinning, Charles Ebenezer Abbey

Doctoral Dissertations

"In zinc electrowinning, Mn oxidizes to form MnO2 on Pb-Ag anodes, cell walls and pipes. MnO2 reduces anode corrosion but also leads to short circuits and maintenance issues. MnO2 is thought to interact with chloride ions and produce oxidized chlorine species. The interactions between Mn and Cl are not well understood. Bench scale experiments were conducted to investigate the effects of the manganese to chloride ratio on anode corrosion rate and electrolyte chemistry using rolled Pb-Ag anodes. Increasing the average Mn/Cl- ratio from ~7:1 to ~11:1 reduced the anode corrosion rate. Anode scales produced ...


The Effects Of Low Aspect Ratio And Heat Exchanging Internals On The Bubble Properties And Flow Regime In A Pilot-Plant Bubble/Slurry Bubble Column For Fischer-Tropsch Synthesis, Hayder Al-Naseri Jan 2019

The Effects Of Low Aspect Ratio And Heat Exchanging Internals On The Bubble Properties And Flow Regime In A Pilot-Plant Bubble/Slurry Bubble Column For Fischer-Tropsch Synthesis, Hayder Al-Naseri

Doctoral Dissertations

"Fischer-Tropsch synthesis (F-T) is a process utilized to convert the syngas mixture of CO and H2 to synthetic fuel and chemicals that executed commercially by using the bubble/slurry bubble column reactor. The experimental results reveal that the investigated parameters, in terms the presence of internals, and reducing the aspect ratio and the solids loading, increase the local gas holdup, interfacial area, bubble passage frequency, and decrease the bubble rise velocity, bubble chord length. Meanwhile, the aspect ratio H/D = 4, and 5 provide enough height to established the fully developed flow regime. As a result of the variation ...


Atomistic Simulations Of Deformation In Metallic Nanolayered Composites, Sixie Huang Jan 2019

Atomistic Simulations Of Deformation In Metallic Nanolayered Composites, Sixie Huang

Doctoral Dissertations

"The mechanical behavior of Metallic Nanolayered Composites (MNCs) is governed by their underlying microstructure. In this dissertation, the roles of the interlayer spacing (grain size, d) and the intralayer biphase spacing (layer thickness, h) on mechanical response of Cu/Nb MNCs are examined by Molecular Dynamics (MD) simulations. The study of the strength of MNCs show that small changes in both d and h play a profound role in the relative plastic contributions from grain boundary sliding and dislocation glide. The interplay of d and h leads to a very broad transition region from grain boundary sliding dominated flow, where ...


Time-Dependent Reliability Methodologies With Saddlepoint Approximation, Zhangli Hu Jan 2019

Time-Dependent Reliability Methodologies With Saddlepoint Approximation, Zhangli Hu

Doctoral Dissertations

"Engineers always encounter time-dependent uncertainties that ubiquitously exist, such as the random deterioration of material properties and time-variant loads. Therefore the reliability of engineering systems becomes time-dependent. It is crucial to predict the time-dependent reliability in the design stage, given possible catastrophic consequences of a failure. Although extensive research has been conducted on reliability analysis, estimating the reliability accurately and efficiently is still challenging. The objective of this work is to develop accurate and efficient reliability methodologies for engineering design. The basic idea is the integration of traditional reliability methods with saddlepoint approximation (SPA), which can accurately approximate the tail ...


Epitaxial Growth Of Semiconductors And Chiral Metal Surfaces Using Spin Coating And Electrodeposition, Meagan V. Kelso Jan 2019

Epitaxial Growth Of Semiconductors And Chiral Metal Surfaces Using Spin Coating And Electrodeposition, Meagan V. Kelso

Doctoral Dissertations

"The current primary methods for epitaxial growth are energy intensive, requiring high temperature or high vacuum to obtain quality thin films. This dissertation explores the solution process methods of electrodeposition and spin coating for growth of epitaxial thin films. First, a method is developed to directly electrodeposit epitaxial CH3NH3PbI3 perovskite for solar cells on single crystal Au by electrochemically reducing I2 in organic solution. Perovskite is a newly explored material for solar cells, and its efficiency may be further improved by increasing the crystalline order. Second, a study on epitaxially electrodeposited chiral metal surfaces ...


Chemically-Bonded Enamel-Coated Steel Pipelines For Corrosion Protection And Flow Efficiency, Liang Fan Jan 2019

Chemically-Bonded Enamel-Coated Steel Pipelines For Corrosion Protection And Flow Efficiency, Liang Fan

Doctoral Dissertations

"This study is to explore and develop chemically-bonded enamel coating (200-300 um) on steel pipes, when subjected to soil and thermal environments, in order to improve the corrosion protection and safety of hazardous liquid and natural gas pipelines while reducing pressure loss. Out of five types of enamels and their various mixtures, Tomatec slurry and GP2118 powder were selected for steel pipeline applications. They were applied at approximately 810 °C to the inside surface of steel pipes in wet and electrostatic processes, respectively. The thickness and surface roughness of the enamel coating were measured using a gauge and an optical ...


Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu Jan 2019

Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu

Doctoral Dissertations

"The current business model for many industrial firms is to function as system integrators, depending on numerous outsourced components from outside component suppliers. This practice has resulted in tremendous cost savings; it makes system reliability analysis, however, more challenging due to the limited component information available to system designers. The component information is often proprietary to component suppliers. Motivated by the need of system reliability prediction with outsourced components, this work aims to explore feasible ways to accurately predict the system reliability during the system design stage. Four methods are proposed. The first method reconstructs component reliability functions using limited ...


Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li Jan 2019

Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li

Doctoral Dissertations

"Ceramic On-Demand Extrusion (CODE) is a recently developed freeform extrusion fabrication process for producing dense ceramic components from single and multiple constituents. In this process, aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle to print each layer sequentially. Once one layer is printed, it is surrounded by oil to prevent undesirable water evaporation from the perimeters of the part. The oil level is regulated just below the topmost layer of the part being fabricated. Infrared radiation is then applied to uniformly and partially dry the top layer so that the yield stress of the paste increases to avoid part deformation. By repeating the above steps, the part is printed in a layer-wise fashion, followed by post-processing. Paste extrusion precision of different extrusion mechanisms was compared and analyzed, with an auger extruder determined to be the most suitable paste extruder for the CODE system. A novel fabrication system was developed based on a motion gantry, auger extruders, and peripheral devices. Sample specimens were then produced from 3 mol% yttria stabilized zirconia using this fabrication system, and their properties, including density, flexural strength, Young's modulus, Weibull modulus, fracture toughness, and hardness were measured. The results indicated that superior mechanical properties were achieved by the CODE process among all the additive manufacturing processes. Further development was made on the CODE process to fabricate ceramic components that have external/internal features such as overhangs by using fugitive support material. Finally, ceramic composites with functionally graded materials (FGMs) were fabricated by the CODE process using a dynamic mixing device"--Abstract, page iv.


Laser Welding Of Metallic Glass To Crystalline Metal In Laser-Foil-Printing Additive Manufacturing, Yingqi Li Jan 2019

Laser Welding Of Metallic Glass To Crystalline Metal In Laser-Foil-Printing Additive Manufacturing, Yingqi Li

Doctoral Dissertations

"The application of metallic glasses has been traditionally limited to parts with small dimensions and simple geometries, due to the requirement of fast cooling during the conventional process of casting. In addition, joining metallic glass to crystalline metal is of interest for many applications that require locally tailored functions and properties, but it is challenging. This research describes a promising additive manufacturing technology, i.e., laser-foil-printing, to make high-quality metallic glass parts with large dimensions and complex geometries and to fabricate multi-material components from metallic glass and crystalline metal. In this research, Zr52.5Ti5Al10Ni ...


Underwater Acoustic Communications And Adaptive Signal Processing, Mohammadhossein Behgam Jan 2019

Underwater Acoustic Communications And Adaptive Signal Processing, Mohammadhossein Behgam

Doctoral Dissertations

"This dissertation proposes three new algorithms for underwater acoustic wireless communications. One is a new tail-biting circular MAP decoder for full tail-biting convolution (FTBC) codes for very short data blocks intended for Internet of Underwater Things (IoUT). The proposed algorithm was evaluated by ocean experiments and computer simulations on both Physical (PHY) and Media access control (MAC) layers. The ocean experimental results show that without channel equalization, the full tail-biting convolution (FTBC) codes with short packet lengths not only can perform similarly to zero-tailing convolution (ZTC) codes in terms of bit error rate (BER) in the PHY layer. Computer simulation ...


Investigating Blast Fume Propagation, Concentration And Clearance In Underground Mines Using Computational Fluid Dynamics (Cfd), Raymond Ninnang Tiile Jan 2019

Investigating Blast Fume Propagation, Concentration And Clearance In Underground Mines Using Computational Fluid Dynamics (Cfd), Raymond Ninnang Tiile

Doctoral Dissertations

"Blasting activities using standard industry explosives is an essential component of underground hard rock mining operations. Blasting operations result in the release of noxious gases, presenting both safety and productivity threats. Overestimation of post-blast re-entry time results in production losses, while underestimation leads to injuries and fatalities. Research shows that most underground mines simply standardize post-blast re-entry times based on experiences and observations. Few underground mines use theoretical methods for calculating post-blast re-entry time. These theoretical methods, however, are unable to account for the variations in the blasting conditions. Literature review shows that: (i) there is currently no means of ...


Pressure Versus Impulse Graph For Blast-Induced Traumatic Brain Injury And Correlation To Observable Blast Injuries, Barbara Rutter Jan 2019

Pressure Versus Impulse Graph For Blast-Induced Traumatic Brain Injury And Correlation To Observable Blast Injuries, Barbara Rutter

Doctoral Dissertations

"With the increased use of explosive devices in combat, blast induced traumatic brain injury (bTBI) has become one of the signature wounds in current conflicts. Animal studies have been conducted to understand the mechanisms in the brain and a pressure versus time graph has been produced. However, the role of impulse in bTBIs has not been thoroughly investigated for animals or human beings.

This research proposes a new method of presenting bTBI data by using a pressure versus impulse (P-I) graph. P-I graphs have been found useful in presenting lung lethality regions and building damage thresholds. To present the animal ...


Using Lidar To Measure Subsurface Movement Of Slow-Moving Landslides And Study The Interaction Between The Soil And Lidar Scanning Targets, Chengxun Lu Jan 2019

Using Lidar To Measure Subsurface Movement Of Slow-Moving Landslides And Study The Interaction Between The Soil And Lidar Scanning Targets, Chengxun Lu

Doctoral Dissertations

"Terrestrial Laser Scanning (TLS) technology has been used for predicting and researching geological hazards for two decades. This research focuses on using LiDAR (Light Detection And Ranging) to measure the slow-moving displacement of both surface and subsurface soil of landslides. Two kinds of computer simulation software, FLAC3D® and PFC3D® were used to simulate the landslide process to compare with the LiDAR scanning results.

The primary contributions from this research are as follows:

1. Several error tests were done to prove that the three-dimensional LiDAR scanner used in this research can precisely obtain the three-dimensional position, the displacement and the rotational ...


Modeling And Simulation Of Micro/Nano-Rod Distribution In Micro Channel Flows, Saman Monjezi Jan 2019

Modeling And Simulation Of Micro/Nano-Rod Distribution In Micro Channel Flows, Saman Monjezi

Doctoral Dissertations

"The behavior of a typical nanorod particle in microscale flows was theoretically investigated, considering the effect of the wall on the rotational and translation motions of the non-spherical particle. Initially, a systematic method using Brownian dynamics simulation of the rotational motion of nanorod was performed to obtain the average orientation distribution of a nanorod in various range of Peclet number and position from the confining wall. Subsequently, the results of the angle distributions simulation were employed to generate a universal mathematical model for the particle orientation distribution, which our model of concentration distribution of high aspect ratio nanorods in the ...


Multiscale Spatio-Temporal Modeling Of Cell Population In Tissue Architecture And Drug Delivery Nanoparticles, Mohammad Aminul Islam Jan 2019

Multiscale Spatio-Temporal Modeling Of Cell Population In Tissue Architecture And Drug Delivery Nanoparticles, Mohammad Aminul Islam

Doctoral Dissertations

"Multiscale nature of a biological system span at many order of magnitudes in time and space. Molecular interaction at lower scale is connected with the higher scale behavior of tissue or organism. Integrating the dynamics and information at different time and space can give a fundamental physiological understanding of the higher level phenomena. But complex features, functions, interconnectivity between different scales and lack of information on the fundamental physiological property make the model difficult and computationally challenging. The multiscale modeling approach can bridge the gap between different scale by a systemic integration of the complex dynamic behavior.

Here, the focus ...


Passive Harmonic Generation At Spring Contacts, Sen Yang Jan 2019

Passive Harmonic Generation At Spring Contacts, Sen Yang

Doctoral Dissertations

"In the first paper, the RF passive harmonic generation phenomenon on the spring contact is studied. A spring contact harmonic generation measurement system is developed. The factors that may have an impact on the spring contact harmonic generation, such as contact material, contact force, and contact resistance are characterized by the measurement system. The gold-to-gold contact is found to be much superior to the stainless-steel contacts. It is also found that the passive nonlinearity at the spring contact is the semiconductor-like junction formed by the surface oxide film.

In the second paper, we show that the maximum E-field coupling occurs ...


Non-Invasive Microwave And Millimeter Wave Reflectometry And Imaging For Human Skin Diagnosis And Materials Characterization, Yuan Gao Jan 2019

Non-Invasive Microwave And Millimeter Wave Reflectometry And Imaging For Human Skin Diagnosis And Materials Characterization, Yuan Gao

Doctoral Dissertations

"Microwave and millimeter wave reflectometry and synthetic aperture radar (SAR) imaging techniques have been successfully applied in many applications, such as nondestructive testing and evaluation (NDT&E), security inspection and medical diagnosis. In this dissertation, the feasibility of using microwave and millimeter reflectometry and SAR imaging for burn diagnosis is investigated through both simulations and measurements, with promising results. To correctly model the interaction between electromagnetic waves and skin, the proper knowledge of the complex permittivity of healthy skin is critically important. To this end, the common used measurement methods for in vivo skin complex permittivity are reviewed and analyzed ...


Reactor Configurations To Support Advanced Material Research, Thaqal Mazyad Alhuzaymi Jan 2019

Reactor Configurations To Support Advanced Material Research, Thaqal Mazyad Alhuzaymi

Doctoral Dissertations

"The research goal is to configure a research reactor with multi-spectral capability for advance material research. This required the consideration of high and low-power levels alongside advanced fuel with high physical density and low enriched 235U. Selected fuel was U-10Mo with 19.75% 235U enrichment. The fuel and control rods system geometries were adopted from Missouri S&T Reactor (MSTR).

A high-power configuration (HPC) at 2 megawatts and low-power configuration (LPC) at 200 kilowatts were considered. Neutronic performances of the configurations were modeled using Monte Carlo N-particle (MCNP) transport code, version 6. Thermal-hydraulic analysis was performed with ANSYS ...


Microstructural Evolution Of Zirconium Carbide (Zrcₓ) Ceramics Under Irradiation Conditions, Raul Florez Jan 2019

Microstructural Evolution Of Zirconium Carbide (Zrcₓ) Ceramics Under Irradiation Conditions, Raul Florez

Doctoral Dissertations

A comprehensive understanding of the microstructural evolution of Zirconium Carbide (ZrC2) ceramics under irradiation conditions is required for their successful implementation in advanced Gen-IV gas-cooled nuclear reactors. The research presented in this dissertation focusses on elucidating the ion and electron irradiation response of ZrC2 ceramics. In the first part of the research, the microstructural evolution was characterized for ZrC2 ceramics irradiated with 10 MeV Au3+ ions up to doses of 30 displacement per atom (dpa) at 800 ºC. Coarsening of the defective microstructure, as a function of dose, was revealed by transmission electron microscopy analysis. The ...


Spatiotemporal Modeling And Model Restructuration Approaches In Studies Of Intracellular Signalling Pathways, Md Shahinuzzaman Jan 2019

Spatiotemporal Modeling And Model Restructuration Approaches In Studies Of Intracellular Signalling Pathways, Md Shahinuzzaman

Doctoral Dissertations

"The main focus of the research is to understand the complex phenomena of cell transduction pathways and cell biology in a single cell. Mathematical modeling and experimental evaluation are widely used approaches for this kind of research. Firstly, A multiscale framework for protein-protein interaction has been established using Brownian dynamics algorithm. Sit specific feature, steric collision, diffusion, co-localization and complex formation with time and space has been included in this spatial modeling framework. By implementation of the time adaptive feature in this framework, the computation time reduces in an order of magnitude compared with traditional modeling framework. This multiscale Brownian ...


Development Of Stage-I Tempered High Strength Cast Steel For Ground Engaging Tools, Viraj Ashok Athavale Jan 2019

Development Of Stage-I Tempered High Strength Cast Steel For Ground Engaging Tools, Viraj Ashok Athavale

Doctoral Dissertations

"Ground Engaging Tools (GET) are the expendable replacement parts used in heavy machinery used with mining or construction equipment. GET’s protect the expensive machine components from the wear and tear found common in high-impact or high-abrasion environments. The goal of this project is to develop advanced next-generation alloy choices that outperforms the existing GET materials. A method of predicting tempered hardness of mixed microstructures was formulated. Using this model, two alloy series viz. Cr-Ni-Mo and Mn-Si-Mo-V were proposed and experimented with the goal of obtaining a high strength and impact resistant cast steel. Cast iterations of Cr-Ni-Mo alloy series ...


Polyurea Aerogels: From Nanoscopic To Macroscopic Properties, Tahereh Taghvaee Jan 2019

Polyurea Aerogels: From Nanoscopic To Macroscopic Properties, Tahereh Taghvaee

Doctoral Dissertations

"The morphology of a material is intrinsically a qualitative property and in order to relate nanomorphology to synthetic conditions, it is necessary to express nano/micro-structure quantitatively. In this context, polyurea aerogels were chosen as a model system with demonstrated potential for rich nanomorphology and being guided by a statistical Design-of-Experiments model, a large array of materials (208) with identical chemical composition, but quite different nanostructures were prepared. By reflecting upon the SEM images, it was realized that our first pre-verbal impression about a nanostructure is related to its openness and texture; the former is quantified by porosity (Π), and ...


Novel Insights Into Low Salinity Water Flooding Enhanced Oil Recovery In Sandstone Reservoirs, Hasan N. Al-Saedi Jan 2019

Novel Insights Into Low Salinity Water Flooding Enhanced Oil Recovery In Sandstone Reservoirs, Hasan N. Al-Saedi

Doctoral Dissertations

"Ever growing global energy demand and the natural decline in oil production from mature oil fields have been the main incentives to search for methods to increase recovery efficiency for several decades. Water flooding is extensively applied worldwide to improve oil recovery. The recent drop in oil prices has turned the oil industry to the cheapest improved oil recovery (IOR) techniques, such as low salinity (LS) waterflooding. Also, the reduction in reservoir energy and the friendly environmental aspects of low salinity water flooding (LSWF) provide additional incentives for its use. That LS water requires decreasing only the active divalent cations ...


Investigating The Performance Of High Viscosity Friction Reducers Used For Proppant Transport During Hydraulic Fracturing, Mohammed Salem Ba Geri Jan 2019

Investigating The Performance Of High Viscosity Friction Reducers Used For Proppant Transport During Hydraulic Fracturing, Mohammed Salem Ba Geri

Doctoral Dissertations

"Over the last few recent years, high viscosity friction reducers (HVFRs) have been successfully used in the oil and gas industry across all premier shale plays in North America including Permian, Bakken, and Eagle Ford. However, selecting the most suitable fracture fluid system plays an essential role in proppant transport and minimizing or eliminating formation damage.

This study investigates the influence of the use of produced water on the rheological behavior of HVFRs compared to a traditional linear guar gel. Experimental rheological characterization was studied to investigate the viscoelastic property of HVFRs on proppant transport. In addition, the successful implication ...


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans ...


Characterization Of A Green Electric Solid Propellant For Electric Propulsion, Matthew Scott Glascock Jan 2019

Characterization Of A Green Electric Solid Propellant For Electric Propulsion, Matthew Scott Glascock

Doctoral Dissertations

"Electric solid propellants are advanced solid chemical rocket propellants that can be controlled (ignited, throttled and extinguished) through the application and removal of an electric current. These propellants are also being considered for use in ablative pulsed plasma thruster and multimode systems. In this work, the behavior and performance of a novel green electric solid propellant operating in an electrothermal ablation-fed pulsed plasma thruster was investigated. Using an inverted pendulum micro-Newton thrust stand, the impulse bit and specific impulse of the device using the electric solid propellant were measured for short-duration and long-duration runs to end-of-life, at energy levels of ...


Experimental Study On Enhanced Oil Recovery (Eor) Mechanisms Of Nanogel Combining With Low Salinity Water For Carbonate Reservoirs, Pu Han Jan 2019

Experimental Study On Enhanced Oil Recovery (Eor) Mechanisms Of Nanogel Combining With Low Salinity Water For Carbonate Reservoirs, Pu Han

Doctoral Dissertations

"Nanomaterials have been widely studied and applied in the oil and gas industry. Among the developed nanomaterials, nano-sized crosslinked polymeric gel particle (nanogel) has shown great potential in recovering residual oil and improving oil recovery. This dissertation carried out their potential EOR mechanisms and the synergetic effect between nanogel and low salinity water. Nanogel used in this study was synthesized through the suspension polymerization process in our lab. The morphology, size distribution, and zeta potential were studied for nanogel dispersed in brine with variable ionic strength. The injectivity of nanogel was elucidated at first to ensure their in-depth penetration ability ...


Deep Understanding Of Degradation In Lithium Ion Batteries Through Experimental And First-Principles Study, Yufang He Jan 2019

Deep Understanding Of Degradation In Lithium Ion Batteries Through Experimental And First-Principles Study, Yufang He

Doctoral Dissertations

"The growing interests in Lithium-ion Batteries (LIBs) have significantly accelerated the development of active materials. However, the key challenge is that electrode materials suffer from degradation, which include transition metal dissolution, solid electrolyte interphase (SEI) layer formation, and mechanical fracture. To address these issues, applying an ultrathin coating onto active materials via Atomic Layer Deposition (ALD) is an efficient way. Although numerious works have been done for active material performance improvement via ALD technology, the fundamental enhancement mechanisms of ALD coating on battery performance improvement are not yet known. Therefore, this dissertation consists of four papers, which focused on the ...