Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Missouri University of Science and Technology

Mechanical Engineering

SLM

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part I, Lan Li, Lei Yan, Wenyuan Cui, Yitao Chen, Tan Pan, Xinchang Zhang, Aaron Flood, Frank W. Liou Aug 2019

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part I, Lan Li, Lei Yan, Wenyuan Cui, Yitao Chen, Tan Pan, Xinchang Zhang, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During the part forming in laser powder bed fusion process, thermal distortion is one big problem due to the thermal stress which is caused by the high cooling rate and temperature gradient. Therefore, it is important to know the effect of process parameters on thermal and stress evolution in the melt zone. In this paper, a 3D finite element model for Selective Laser Melting (SLM) process based on sequentially coupled thermo-mechanical field analysis was developed for accurately predicting thermal history and surface features, like distortion and residual stress. Temperature dependent material properties for performed material 304L stainless steel are incorporated ...


Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part Ii, Lan Li, Lei Yan, Yitao Chen, Tan Pan, Xinchang Zhang, Wenyuan Cui, Aaron Flood, Frank W. Liou Aug 2019

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part Ii, Lan Li, Lei Yan, Yitao Chen, Tan Pan, Xinchang Zhang, Wenyuan Cui, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Finite Element Analysis (FEA) is used to predict the transient thermal cycle and optimize process parameters to analyze these effects on deformation and residual stresses. However, the process of predicting the thermal history in this process with the FEA method is usually time-consuming, especially for large-scale parts. In this paper, an effective predictive model of part deformation and residual stress was developed for accurately predicting deformation and residual stresses in large-scale parts. An equivalent body heat flux proposed from the single layer laser scan model was imported as the thermal load to the layer by layer model. The hatched layer ...


Anisotropy In Impact Toughness Of Powder Bed Fused Aisi 304l Stainless Steel, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk Mar 2019

Anisotropy In Impact Toughness Of Powder Bed Fused Aisi 304l Stainless Steel, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The current effort involved investigation into the anisotropy of AISI 304L fabricated through laser powder bed fusion. Charpy V‐notch specimens made from material fabricated at three different build orientations were tested and analyzed. A statistically significant difference among the toughness values indicates the presence of anisotropy within the additively manufactured material. While the lowest toughness was found in vertically built specimens, the horizontal specimens were found to exhibit the highest toughness. From the fracture surfaces, an atypical mode of failure was observed. Exclusive crack propagation along the interlayer track boundaries was observed. The toughness variation correlated with the ease ...