Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Hydration Of Binary Portland Cement Blends Containing Silica Fume: A Decoupling Method To Estimate Degrees Of Hydration And Pozzolanic Reaction, Wenyu Liao, Xiao Sun, Aditya Kumar, Hongfang Sun, Hongyan Ma Apr 2019

Hydration Of Binary Portland Cement Blends Containing Silica Fume: A Decoupling Method To Estimate Degrees Of Hydration And Pozzolanic Reaction, Wenyu Liao, Xiao Sun, Aditya Kumar, Hongfang Sun, Hongyan Ma

Materials Science and Engineering Faculty Research & Creative Works

Determination of degrees of hydration/reaction of components of blended cementitious systems (i. e., cement and SCMs: supplementary cementitious materials) is essential to estimate the systems' properties. Although the best methods for determining degrees of reaction of different SCMs have been recommended by RILEM TC238, they rely on either expensive equipment (e.g., nuclear magnetic resonance) or time-consuming sample preparation and data processing (e.g., backscattered electron image analysis). Furthermore, these methods cannot simultaneously characterize degree of hydration of cement and degree of reaction of SCMs. A novel decoupling method, which can simultaneously estimate the degree of hydration of cement ...


Seismicity Enhances Macrodispersion In Finite Porous And Fractured Domains: A Pore-Scale Perspective, Lizhi Zheng, Lichun Wang, Wen Deng Feb 2019

Seismicity Enhances Macrodispersion In Finite Porous And Fractured Domains: A Pore-Scale Perspective, Lizhi Zheng, Lichun Wang, Wen Deng

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Understanding the effects of oscillating flow field induced by seismicity on the transport process is vital for predicting the fate and transport of solute in many dynamic environments. However, there is prominent discrepancy in arguing with the response of dispersion to the oscillating flow field (i.e., the longitudinal dispersion coefficient would decrease, increase, or maintain unchanged). To unravel the underpinning physics about this controversial response, we simulated two-hundred twenty pore-scale numerical experiments for the seismicity-induced oscillating flow field and associated solute transport in the idealized finite porous (i.e., fluidic plate) and fractured (i.e., parallel plates) domains. The ...


Smart Building And Construction Materials, Donglu Shi, Julian Wang, Wen Deng Jan 2019

Smart Building And Construction Materials, Donglu Shi, Julian Wang, Wen Deng

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Advances and innovations in materials science and engineering have always played a substantial role in civil engineering, building structural design, and construction. In recent years, extensive effort has been devoted to the applications of stimuli-responsive smart materials and nanostructures in buildings. These smart materials used in the built environment can be defined as those offering specific functional and adaptable properties in response to thermal, optical, structural, and environmental stimuli. Not only do these materials enhance the overall performance of new building construction but also promise safer structures, longer durability of building elements, efficient building energy savings, greater environmental sustainability, and ...


A Study On End-Anchorage And Bond Behavior Of Steel-Fiber Reinforced Cementitious Matrix Composites Externally Bonded To A Concrete Substrate, Christopher Michael Moore Jan 2019

A Study On End-Anchorage And Bond Behavior Of Steel-Fiber Reinforced Cementitious Matrix Composites Externally Bonded To A Concrete Substrate, Christopher Michael Moore

Masters Theses

"Fiber reinforced cementitious matrix (FRCM) composites are a strengthening material consisting of continuous fibers embedded in an inorganic matrix that have the potential to provide additional flexural and shear strength to concrete and masonry members. When used for external strengthening, however, debonding of the material is often observed due to slippage of the fiber with respect to the matrix, causing loss of composite action and a reduction in load carrying capacity. The composite utilized in this study consisted of continuous steel fibers embedded in an inorganic cementitious matrix bonded to a concrete prism. Additionally, an end-anchorage system was implemented with ...


Detection And Elimination Of Rock Face Vegetation From Terrestrial Lidar Data Using The Virtual Articulating Conical Probe Algorithm, Kenneth John Boyko Jan 2019

Detection And Elimination Of Rock Face Vegetation From Terrestrial Lidar Data Using The Virtual Articulating Conical Probe Algorithm, Kenneth John Boyko

Doctoral Dissertations

"A common use of terrestrial lidar is to conduct studies involving change detection of natural or engineered surfaces. Change detection involves many technical steps beyond the initial data acquisition: data structuring, registration, and elimination of data artifacts such as parallax errors, near-field obstructions, and vegetation. Of these, vegetation detection and elimination with terrestrial lidar scanning (TLS) presents a completely different set of issues when compared to vegetation elimination from aerial lidar scanning (ALS). With ALS, the ground footprint of the lidar laser beam is very large, and the data acquisition hardware supports multi-return waveforms. Also, the underlying surface topography is ...


Development Of Lidar Assisted Terrestrial Radar Interferometry For Rock Deformation Monitoring, Ricardo Javier Romero Ramirez Jan 2019

Development Of Lidar Assisted Terrestrial Radar Interferometry For Rock Deformation Monitoring, Ricardo Javier Romero Ramirez

Doctoral Dissertations

"Rock and soil slope movements cost millions of dollars annually. During the past few decades, engineers have relied on traditional methods to detect slope movements. These tools are valuable for small spatial areas but, may not be adequate or cost effective for large spatial areas. Remote sensing methods such as terrestrial laser scanning (TLS) and terrestrial radar interferometry (TRI) provide excellent spatial coverage, and with adequate post-data-processing software, sub-millimetric scale deformation sensitivity can be achieved.

This work will present a comparative experimental study between TLS and TRI. The comparative experimental study will allow us to achieve the two main objectives ...


Dynamic Impact Induced By Tornadoes Through Simulations Based On Two-Way Wind-Structure Interactions, Tiantian Li Jan 2019

Dynamic Impact Induced By Tornadoes Through Simulations Based On Two-Way Wind-Structure Interactions, Tiantian Li

Doctoral Dissertations

"Tornadoes have become a significant cause of property damage, injuries and life losses. Investigations of tornadoes indicate that most fatalities were caused by building failure. For example, in the Joplin, MO tornado of 22 May 2011, 161 people were killed, and 84% fatalities were related to building failure. Therefore, it is imperative to develop science-based tornado-resistant building codes, in order to provide a better level of occupant protection from tornadoes and to minimize the tornado-induced damage. This requires in-depth understanding of the wind characteristics of tornadoes and their wind effects on civil structures, based on which design tornadic wind loading ...


Development Of Test Methods For Characterizing Extrudability Of Cement-Based Materials For Use In 3d Printing, Jonathan Thomas Kuchem Jan 2019

Development Of Test Methods For Characterizing Extrudability Of Cement-Based Materials For Use In 3d Printing, Jonathan Thomas Kuchem

Masters Theses

"3D printing is the process of creating three-dimensional objects using an automated additive manufacturing process. The 3D printing process has been used with materials such as metals and polymers, but application with cement based materials for the construction industry has yet to be developed. In this research, two main problems were investigated for printing cement based composite materials: extrudability and tensile reinforcement. Fiber-reinforced concrete (FRC) was studied as an internal reinforcing system to increase tensile/flexural strength. First, FRC was studied to investigate mechanical properties and use of fibers from waste tires as an environmentally friendly option. A reference mixture ...


Chemically-Bonded Enamel-Coated Steel Pipelines For Corrosion Protection And Flow Efficiency, Liang Fan Jan 2019

Chemically-Bonded Enamel-Coated Steel Pipelines For Corrosion Protection And Flow Efficiency, Liang Fan

Doctoral Dissertations

"This study is to explore and develop chemically-bonded enamel coating (200-300 um) on steel pipes, when subjected to soil and thermal environments, in order to improve the corrosion protection and safety of hazardous liquid and natural gas pipelines while reducing pressure loss. Out of five types of enamels and their various mixtures, Tomatec slurry and GP2118 powder were selected for steel pipeline applications. They were applied at approximately 810 °C to the inside surface of steel pipes in wet and electrostatic processes, respectively. The thickness and surface roughness of the enamel coating were measured using a gauge and an optical ...