Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Embry-Riddle Aeronautical University

Discipline
Keyword
Publication
Publication Type

Articles 1 - 30 of 105

Full-Text Articles in Engineering

Where We Are With Enterprise Architecture, Leila Halawi, Richard Mccarthy, James Farah Dec 2019

Where We Are With Enterprise Architecture, Leila Halawi, Richard Mccarthy, James Farah

Publications

Enterprise architecture has been continuously developing since the mid-1980s. Although there is now 35 years of research and use, there is still a lack consistent definitions and standards. This is apparent in the proliferation of so many different enterprise architecture frameworks. Despite the significant body of research, there is a need for standardization of terminology based upon a meta-analysis of the literature. Enterprise architecture programs require commitment throughout an organization to be effective and must be perceived to add value. This research offers an initial basis for researchers who need to expand and continue this research topic with an actual ...


Guest Editorial Special Issue On Toward Securing Internet Of Connected Vehicles (Iov) From Virtual Vehicle Hijacking, Yue Cao, Houbing Song, Omprakash Kaiwartya, Sinem Coleri Ergen, Jaime Lloret, Naveed Ahmad Aug 2019

Guest Editorial Special Issue On Toward Securing Internet Of Connected Vehicles (Iov) From Virtual Vehicle Hijacking, Yue Cao, Houbing Song, Omprakash Kaiwartya, Sinem Coleri Ergen, Jaime Lloret, Naveed Ahmad

Publications

Today’s vehicles are no longer stand-alone transportation means, due to the advancements on vehicle-tovehicle (V2V) and vehicle-to-infrastructure (V2I) communications enabled to access the Internet via recent technologies in mobile communications, including WiFi, Bluetooth, 4G, and even 5G networks. The Internet of vehicles was aimed toward sustainable developments in transportation by enhancing safety and efficiency. The sensor-enabled intelligent automation of vehicles’ mechanical operations enhances safety in on-road traveling, and cooperative traffic information sharing in vehicular networks improves traveling efficiency.


Feasibility Of Circular Orbits For Proximity Operations In Strongly Perturbed Environments Around Uniformly Rotating Asteroids, Nicholas Peter Liapis Aug 2019

Feasibility Of Circular Orbits For Proximity Operations In Strongly Perturbed Environments Around Uniformly Rotating Asteroids, Nicholas Peter Liapis

Dissertations and Theses

Asteroids have been mapped and observed since 1801 when an Italian astronomer Guiseppe Piazzi discovered Ceres (Serio, Manara, & Sicoli, 2002). Since then, asteroids have been growing in popularity throughout the scientific community because they are thought to hold the information we need to understand how the solar system developed and why life exists on earth, as well as potential precious resources. This research studies different types of orbits that have been performed to date around asteroids and how they can be reworked to require less control effort. Different types of missions that have been sent to asteroids are discussed, as ...


Nonlinear Estimation And Control Methods For Mechanical And Aerospace Systems Under Actuator Uncertainty, Krishna Bhavithavya Kidambi Aug 2019

Nonlinear Estimation And Control Methods For Mechanical And Aerospace Systems Under Actuator Uncertainty, Krishna Bhavithavya Kidambi

Dissertations and Theses

Air flow velocity field control is of crucial importance in aerospace applications to prevent the potentially destabilizing effects of phenomena such as cavity ow oscillations, flow separation, flow-induced limit cycle oscillations (LCO) (flutter), vorticity, and acoustic instabilities. Flow control is also important in aircraft applications to reduce drag in aircraft wings for improved flight performance. Although passive flow control approaches are often utilized due to their simplicity, active flow control (AFC) methods can achieve improved flight performance over a wider range of time-varying operating conditions by automatically adjusting their level of control actuation in response to real-time sensor measurements. Although ...


Advanced Photogrammetric Modeling Of Dranoc Kullas Using Small Unmanned Aircraft Systems, George Gebert, Liam Griffin, Justin Lawlor, Lauren Davis, Lauren Davis, Kylee Vander Velde, Sami Ali Jul 2019

Advanced Photogrammetric Modeling Of Dranoc Kullas Using Small Unmanned Aircraft Systems, George Gebert, Liam Griffin, Justin Lawlor, Lauren Davis, Lauren Davis, Kylee Vander Velde, Sami Ali

Student Works

Small unmanned aircraft systems (sUAS), also known as drones, offer new capabilities for cultural heritage preservation activities. Student researchers from Embry-Riddle Aeronautical University have applied photogrammetric techniques based upon sUAS captured imagery to assist with historical site documentation and cultural heritage preservation in the Republic of Kosovo. Imagery from three locations -- Isniq, Dranoc and Junik -- highlight this work. Student researchers created georectified orthomosaics and 3D virtual objects. At each of these three locations the object of interest was a type of building known as a kulla. These kullas are fortified homes built for protecting large families and are unique to ...


Determination Of Parameters During Quasi-Steady Stall Maneuver Using Genetic Algorithm, Ambuj Srivastava Jul 2019

Determination Of Parameters During Quasi-Steady Stall Maneuver Using Genetic Algorithm, Ambuj Srivastava

International Journal of Aviation, Aeronautics, and Aerospace

The current work offers the determination of longitudinal aerodynamic derivatives during flight manoeuver at angles of attack near the stall. The flight manoeuver near stall is highly non-linear in nature due to separated flow at such elevated angles of attack. Kirchoff’s model for Quasi-Steady Stall Modelling (QSSM) is employed to represent the non-linear nature of aerodynamics during flight manoeuver at elevated angles of attack close to the stall. The Genetic Algorithm (GA) optimized output error method is utilized for estimating the parameters specific to stall characteristics and longitudinal aerodynamics of the ATTAS aircraft. The comparative evaluation of the parameter ...


Design Of Personnel Big Data Management System Based On Blockchain, Houbing Song, Jian Chen, Zhihan Lv Jul 2019

Design Of Personnel Big Data Management System Based On Blockchain, Houbing Song, Jian Chen, Zhihan Lv

Publications

With the continuous development of information technology, enterprises, universities and governments are constantly stepping up the construction of electronic personnel information management system. The information of hundreds of thousands or even millions of people’s information are collected and stored into the system. So much information provides the cornerstone for the development of big data, if such data is tampered with or leaked, it will cause irreparable serious damage. However, in recent years, electronic archives have exposed a series of problems such as information leakage, information tampering, and information loss, which has made the reform of personnel information management more ...


Adaboost‑Based Security Level Classifcation Of Mobile Intelligent Terminals, Feng Wang, Houbing Song, Dingde Jiang, Hong Wen Jul 2019

Adaboost‑Based Security Level Classifcation Of Mobile Intelligent Terminals, Feng Wang, Houbing Song, Dingde Jiang, Hong Wen

Publications

With the rapid development of Internet of Things, massive mobile intelligent terminals are ready to access edge servers for real-time data calculation and interaction. However, the risk of private data leakage follows simultaneously. As the administrator of all intelligent terminals in a region, the edge server needs to clarify the ability of the managed intelligent terminals to defend against malicious attacks. Therefore, the security level classification for mobile intelligent terminals before accessing the network is indispensable. In this paper, we firstly propose a safety assessment method to detect the weakness of mobile intelligent terminals. Secondly, we match the evaluation results ...


Mass Evacuation Effects On Transportation: A Comparative Analysis, Emily M. Jannace Jul 2019

Mass Evacuation Effects On Transportation: A Comparative Analysis, Emily M. Jannace

Beyond: Undergraduate Research Journal

Mass evacuations have changed greatly in the past two decades. Evacuations such as Louisiana during Hurricane Katrina, Florida during Hurricane Irma, and New York during the 9/11 Terrorist Attacks, Hurricane Sandy, and Hurricane Irene have had significant impacts on future mass evacuations in terms of transportation. This paper takes these methods and analyzes the best approach in given situations based on volume capacity, impact, and cost to make recommendations that can be used by the three previously mention municipalities. With so many different techniques available, it is important to choose the one that moves the most people out of ...


Comparative Analysis Of Small Unmanned Aircraft Systems Operations Manuals, Stephen M. Cigal Jul 2019

Comparative Analysis Of Small Unmanned Aircraft Systems Operations Manuals, Stephen M. Cigal

Student Works

With over 100,000 remote pilots in the United States, individuals and companies are rapidly incorporating unmanned aircraft system technologies into their everyday life and businesses models. The companies that use these technologies must comply with federal and state regulations in order to maintain a safe environment to operate. These operations must also be accepted by the general public. Since the FAA regulations for small unmanned aircraft systems (sUAS) went into effect in 2016, supplemented by additional state and/or local requirements, some companies have generated operations manuals (OM) to ensure consistent, safe flight that meets these requirements. By analyzing ...


Spacecraft Trajectory Planning For Optimal Observability Using Angles-Only Navigation, Francisco José Franquiz Jul 2019

Spacecraft Trajectory Planning For Optimal Observability Using Angles-Only Navigation, Francisco José Franquiz

Dissertations and Theses

This work leverages existing techniques in angles-only navigation to develop optimal range observability maneuvers and trajectory planning methods for spacecraft under constrained relative motion. The resulting contribution is a guidance method for impulsive rendezvous and proximity operations valid for elliptic orbits of arbitrary eccentricity.

The system dynamics describe the relative motion of an arbitrary number of maneuvering (chaser) spacecraft about a single non-cooperative resident-space-object (RSO). The chaser spacecraft motion is constrained in terms of the 1) collision bounds of the RSO, 2) maximum fuel usage, 3) eclipse avoidance, and 4) optical sensor field of view restrictions. When more than one ...


Benefits Of Additional Runway Crossings On Parallel Runway Operations, Sergio Ezequiel Taleisnik Jul 2019

Benefits Of Additional Runway Crossings On Parallel Runway Operations, Sergio Ezequiel Taleisnik

Dissertations and Theses

As the air transportation industry expands, airports face numerous challenges to manage the increasing traffic. Among these problems, runway crossings are a considerable source of ground traffic inefficiency and risk. Building end-around taxiways are the only strategy to avoid crossings, but these are not always feasible, and therefore airport planners must find alternatives. This study consisted of a simulation over an airport that currently requires a vast amount of its arrivals to go through runway crossings in order to reach the apron; the airport simulation software utilized was the Total Airspace and Airport Modeler (TAAM). The process began with a ...


Prediction Of Noise Associated With An Isolated Uav Propeller, Samuel O. Afari Jul 2019

Prediction Of Noise Associated With An Isolated Uav Propeller, Samuel O. Afari

Dissertations and Theses

The emergent field of interest in the Urban Air Mobility community is geared towards a world where aerial vehicles are commonplace. This poses the problem of the effects of the radiated noise. The present research presents an in-depth analysis of the noise generation mechanism of a propeller as a mode of propulsion of the said aerial vehicles. Numerical simulation utilizing a Hybrid Large-Eddy Simulation (LES) coupled with Unsteady Reynolds-Averaged Navier-Stokes (RANS) solver, is adopted on an isolated propeller modeled from the commercial DJI Phantom II 9450 propeller. The Spalart-Allmaras one equation turbulence model with rotation/curvature correction is used. The ...


Using More Frequent And Formative Assessment When Replicating The Wright State Model For Engineering Mathematics Education, Leroy Long Iii, Claudia Morello Jun 2019

Using More Frequent And Formative Assessment When Replicating The Wright State Model For Engineering Mathematics Education, Leroy Long Iii, Claudia Morello

Publications

A mid-sized private university in the Southeast has created an experimental first-year engineering course based on the Wright State Model for Engineering Mathematics Education. The course aims to increase student retention, motivation and success in engineering through an application-oriented, hands-on introduction to engineering mathematics. When compared to the traditional Wright State Model for Engineering Mathematics Education, the new course also focused on student communication (written, oral), teamwork, self-regulated learning and professionalism. The new experimental course also uses more frequent and formative assessment techniques. Faculty used Wright State’s sample homework assignments to provide students’ with formative feedback and Wright State ...


Propulsion System Testing For A Long-Endurance Solar-Powered Unmanned Aircraft, D. Dantsker, Robert Deters, Marco Caccamo Jun 2019

Propulsion System Testing For A Long-Endurance Solar-Powered Unmanned Aircraft, D. Dantsker, Robert Deters, Marco Caccamo

Publications

The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e. propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. In order to determine ...


The Effect Of Electronic Flight Bags In Flight Training On Preflight Skill Development And Aeronautical Decision Making, Shlok Misra, Michele Halleran Jun 2019

The Effect Of Electronic Flight Bags In Flight Training On Preflight Skill Development And Aeronautical Decision Making, Shlok Misra, Michele Halleran

Student Works

This study was designed to evaluate the effects of utilizing Electronic Flight Bags (EFBs) in flight training with emphasis on preflight skill development and Aeronautical Decision Making. The study participants were student pilots or private pilots who used EFBs in flight training and had not logged more than 100 total flight hours. The study utilized a simulation of the preflight process of a Visual Flight Rules cross-country flight in which the participants answered questions related to the flight preparation. Fifty percent of the study’s population completed this survey with the information provided through an EFB and the other 50 ...


Forensic Analysis Of Spy Applications In Android Devices, Shinelle Hutchinson, Umit Karabiyik May 2019

Forensic Analysis Of Spy Applications In Android Devices, Shinelle Hutchinson, Umit Karabiyik

Annual ADFSL Conference on Digital Forensics, Security and Law

Smartphones with Google's Android operating system are becoming more and more popular each year, and with this increased user base, comes increased opportunities to collect more of these users' private data. There have been several instances of malware being made available via the Google Play Store, which is one of the predominant means for users to download applications. One effective way of collecting users' private data is by using Android Spyware. In this paper, we conduct a forensic analysis of a malicious Android spyware application and present our findings. We also highlight what information the application accesses and what ...


Forward Osmosis Flow Rate Differential Using Different Osmotic Agents, John M. Trzinski May 2019

Forward Osmosis Flow Rate Differential Using Different Osmotic Agents, John M. Trzinski

Beyond: Undergraduate Research Journal

Life support is one of the most vital systems flown on manned spaceflight missions. The systems currently used are large, heavy, inefficient, and power consuming in an environment that requires nearly perfect conditions to function. Forward Osmosis (FO) is a form of filtration that uses the natural properties of water and concentration gradients to filter water without the need for any electricity. An experiment was conducted during the Embry Riddle Summer 2018 study abroad to the LUNARES research station in Piła, Poland. This experiment explored how the flow rate of water through a FO filtration system could be affected by ...


Experimental And Computational Analysis Of A 3d Printed Wing Structure, Aryslan Malik May 2019

Experimental And Computational Analysis Of A 3d Printed Wing Structure, Aryslan Malik

Dissertations and Theses

Correct prediction of aeroelastic response is a crucial part in designing flutter or divergence free aircrafts within a designated flight envelope. The aeroelastic analysis includes specifically tailoring the design in order to prevent flutter (passive control) or eliminate it by applying input on control surfaces (active control). High-fidelity models such as coupled Computational Fluid Dynamics (CFD) - Computational Structural Dynamics (CSD) can obtain full structural and aerodynamic behavior of a deformable aircraft. However, these models are so large that pose a significant challenge from the control systems design perspective. Thus, the development of an aeroelastic modeling software that can be used ...


Adaptive Commanding Of Control Moment Gyroscopes With Backlash, Justin G. Bourke May 2019

Adaptive Commanding Of Control Moment Gyroscopes With Backlash, Justin G. Bourke

Dissertations and Theses

The existence of backlash in mechanical systems provides significant challenges when attempting to control these systems to a high degree of precision. The imperfect meshing of gear or belt teeth deteriorates the performance of position controllers and tracking of small commands, producing unacceptable steady-state offsets, increased rise and settling times. Agile spacecraft often use control moment gyroscopes (CMGs) equipped with gear trains to efficiently provide torque for the fine attitude adjustments used in docking and precision stabilization maneuvers. A theoretical examination and a practical model is developed to study the effectiveness of both proportional-integral (PI) and model referencing adaptive controllers ...


Development Of Robust Control Laws For Disturbance Rejection In Rotorcraft Uavs, Johannes Verberne May 2019

Development Of Robust Control Laws For Disturbance Rejection In Rotorcraft Uavs, Johannes Verberne

Dissertations and Theses

Inherent stability inside the flight envelope must be guaranteed in order to safely introduce private and commercial UAV systems into the national airspace. The rejection of unknown external wind disturbances offers a challenging task due to the limited available information about the unpredictable and turbulent characteristics of the wind. This thesis focuses on the design, development and implementation of robust control algorithms for disturbance rejection in rotorcraft UAVs. The main focus is the rejection of external disturbances caused by wind influences. Four control algorithms are developed in an effort to mitigate wind effects: baseline nonlinear dynamic inversion (NLDI), a wind ...


Cfd Study Of Taylor-Like Vortices In Swirling Flows, Sattar Panahandehgar May 2019

Cfd Study Of Taylor-Like Vortices In Swirling Flows, Sattar Panahandehgar

Dissertations and Theses

Swirling flows are complex fluid motions that appear in various natural phenomena and man-made devices. Numerous engineering applications such as turbomachinery, jet engine combustion chambers, mixing tanks and industrial burners involve swirling flows. This wide range of applications is due to unique characteristics offered by swirling flows such as increase in mixing rate, heat transfer rate and wall shear stress. In this study the axisymmetric swirling flow behavior in the context of a hybrid rocket engine have been analyzed. While modeling the flow inside a cylindrical chamber using CFD, a similarity with the Taylor vortices instability has been observed. Similar ...


A Behavioral Research Model For Small Unmanned Aircraft Systems For Data Gathering Operations, Paul Leonard Myers Iii May 2019

A Behavioral Research Model For Small Unmanned Aircraft Systems For Data Gathering Operations, Paul Leonard Myers Iii

Dissertations and Theses

According to Hitlin (2017) of the Pew Research Center, only 8% of U.S. citizens own an unmanned aircraft. Additionally, regarding feelings if U.S. citizens saw an unmanned aircraft flying close to where they live, 26% say they would be nervous, 12% feel angry, and 11% are scared. As of March 9, 2018, there were 1,050,328 U.S. small unmanned aircraft system (sUAS) registrations compared to 947,970 November 29, 2017. While sUAS use has increased in the U.S., it has lagged when compared to other items for personal use available to U.S. citizens as ...


Space Image Processing And Orbit Estimation Using Small Aperture Optical Systems, David Zuehlke May 2019

Space Image Processing And Orbit Estimation Using Small Aperture Optical Systems, David Zuehlke

Dissertations and Theses

Angles-only initial orbit determination (AIOD) methods have been used to find the orbit of satellites since the beginning of the Space Race. Given the ever increasing number of objects in orbit today, the need for accurate space situational awareness (SSA) data has never been greater. Small aperture (< 0:5m) optical systems, increasingly popular in both amateur and professional circles, provide an inexpensive source of such data. However, utilizing these types of systems requires understanding their limits. This research uses a combination of image processing techniques and orbit estimation algorithms to evaluate the limits and improve the resulting orbit solution obtained using small aperture systems. Characterization of noise from physical, electronic, and digital sources leads to a better understanding of reducing noise in the images used to provide the best solution possible. Given multiple measurements, choosing the best images for use is a non-trivial process and often results in trying all combinations. In an effort to help autonomize the process, a novel “observability metric” using only information from the captured images was shown empirically as a method of choosing the best observations. A method of identifying resident space objects (RSOs) in a single image using a gradient based search algorithm was developed and tested on actual space imagery captured with a small aperture optical system. The algorithm was shown to correctly identify candidate RSOs in a variety of observational scenarios.


Hypervelocity Impact Analysis Of Hybrid Nanocomposite Sensors For Inflatable Space Structures, Yachna Gola May 2019

Hypervelocity Impact Analysis Of Hybrid Nanocomposite Sensors For Inflatable Space Structures, Yachna Gola

Dissertations and Theses

Future space exploration requires easy-to-transport, and easy-to-build and deploy space habitats. NASA and Bigelow Aerospace have collaborated so that human habitation can be made safe and easy with inflatable space habitats (Litteken, 2017). One of the biggest threats faced by these structures in outer space is impact damage by micrometeoroid orbital debris (MMOD) traveling at velocities as high as 15 km/s (Lemmens, Krag, Rosebrock, & Carnelli, 2013). This work presents fabrication and testing of hybrid nanocomposites with carbon nanotubes (CNT) and coarse graphene nanoplatelets (GNP) as fillers and flexible epoxy matrix, that are proposed to be used for sensing the ...


Preliminary Test Predictions For Scale Ram-Air Parachute Testing, Christian A. Guzman Zurita May 2019

Preliminary Test Predictions For Scale Ram-Air Parachute Testing, Christian A. Guzman Zurita

Dissertations and Theses

The present thesis proposes a preliminary analysis to predict the aerodynamic performance for experimental tests of ram-air parachutes in a wind tunnel. A scaled experimental test setup is developed for determining the aerodynamic coefficients of lift (𝐶𝐿) and drag (𝐶𝐷) conducted in a wind tunnel. Additionally, a CFD approach where a steady-state parachute shape defined based on experiments, photographs, and literature, is presented. The accuracy of the simulation depends considerably on the ability to resolve the canopy geometry. Therefore, a CAD geometry generation is implemented for flexible control of the canopy structure by implementing design parameters, e.g., chord, span ...


Low-Tip-Speed High-Torque Proprotor Noise Approximation For Design Cycle Analysis, Xavier G. Santacruz May 2019

Low-Tip-Speed High-Torque Proprotor Noise Approximation For Design Cycle Analysis, Xavier G. Santacruz

Dissertations and Theses

Noise reduction in aviation would enable urban missions that cannot be own with current generation helicopters because of their noisiness. This goal can be achieved by using electric motors as they are quieter and can produce higher torque at lower RPMs. Therefore, a proprotor system can be designed to exploit this characteristic potentially abating noise levels. This research performed noise approximations included with rotor aerodynamics for a single, electric-driven, hovering proprotor by creating a code meant to be used in design cycle analysis. The approximation was based on geometry by using the blade element momentum theory, and calculating the pressure ...


Covering Shock Wave Induced Interfacial Mixing: Numerical Study And A Control Primer, Erik S. Proaño May 2019

Covering Shock Wave Induced Interfacial Mixing: Numerical Study And A Control Primer, Erik S. Proaño

Dissertations and Theses

This document is aiming toward deepening the understanding of the phenomena of mixing and the effect of the initial conditions in the cylindrical & spherical Richtmyer-Meshkov and Rayleigh-Taylor Instabilities. This work is focused on identifying the most energetic structures of the ow in order to define a reduced order model intended for modeling the evolution of the mixing layer after reshocking the density interface. Initially, Simulations are implemented for the two dimensional case of a cylindrical shock wave convergently approaching an initially wave-like perturbed density discontinuity formed by a target of Sulfur Hexauoride immersed into unshocked air with Atwood number of 0.67. The perturbation is varied by setting different values for the wave amplitude and wave-number; the amplitude and wave-number effects on late-time mixing are studied separately and then such perturbation features are coupled together in the analysis of single- and multi-mode well-defined cylindrical perturbations. The simulation data is then utilized as a mechanism for obtaining a model equation intended to predict the mixing layer evolution using a Proper Orthogonal Decomposition. The ultimate goal of the POD is to model the evolution after reshock which has been the main issue to be tackled ...


Optimal Battery Weight Fraction For Serial Hybrid Propulsion System In Aircraft Design, Tsz Him Yeung May 2019

Optimal Battery Weight Fraction For Serial Hybrid Propulsion System In Aircraft Design, Tsz Him Yeung

Dissertations and Theses

This thesis focuses on electric propulsion technology associated with serial hybrid power plants most commonly associated with urban air mobility vehicles. While closed form analytical solutions for parallel hybrid aviation cases have been determined, optimized serial hybrid power plants have not seen the same degree of fidelity. Presented here are the analytical relationships between several preliminary aircraft design objectives and the battery weight fraction. These design objectives include aircraft weight, range, operation cost, and carbon emissions. The relationships are based on a serial hybrid electric propulsion architecture from an energy standpoint, and can be applied to hybrid aircraft of different ...


A Hybrid Vortex Solution For Radial Equilibrium In Axial Compressors, Wenyu Li May 2019

A Hybrid Vortex Solution For Radial Equilibrium In Axial Compressors, Wenyu Li

Dissertations and Theses

A hybrid vortex solution using the radial equilibrium equation for three dimensional design in axial compressors is generated. One of the most common used vortex solutions is Free Vortex. However, it ignores the fact that axial velocity varies with radius. The Hybrid Vortex includes axial velocity distribution with radius, which gives a more effective design. A single stage is first designed using the Free Vortex design method. A low hub-to-tip ratio is set to ensure subsonic flow. The axial velocity profile is exported from the CFX solver of the inlet diffuser. Using the Hybrid Vortex solution to the radial equilibrium ...