Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

All-Optical Control Of Lead Halide Perovskite Microlasers, Nan Zhang, Yubin Fan, Kaiyang Wang, Zhiyuan Gu, Yuhan Wang, Li Ge, Shumin Xiao, Qinghai Song Apr 2019

All-Optical Control Of Lead Halide Perovskite Microlasers, Nan Zhang, Yubin Fan, Kaiyang Wang, Zhiyuan Gu, Yuhan Wang, Li Ge, Shumin Xiao, Qinghai Song

Publications and Research

Lead halide perovskites based microlasers have recently shown their potential in nanophotonics. However, up to now, all of the perovskite microlasers are static and cannot be dynamically tuned in use. Herein, we demonstrate a robust mechanism to realize the alloptical control of perovskite microlasers. In lead halide perovskite microrods, deterministic mode switching takes place as the external excitation is increased: the onset of a new lasing mode switches off the initial one via a negative power slope, while the main laser characteristics are well kept. This mode switching is reversible with the excitation and has been explained via cross-gain saturation ...


Proceedings Of The Cuny Games Conference 5.0, Robert O. Duncan, Joe Bisz, Julie Cassidy, Kathleen Offenholley, Carolyn Stallard, Deborah Sturm, Anders A. Wallace Mar 2019

Proceedings Of The Cuny Games Conference 5.0, Robert O. Duncan, Joe Bisz, Julie Cassidy, Kathleen Offenholley, Carolyn Stallard, Deborah Sturm, Anders A. Wallace

Publications and Research

The CUNY Games Network is an organization dedicated to encouraging research, scholarship and teaching in the developing field of games-based learning. We connect educators from every campus and discipline at CUNY and beyond who are interested in digital and non-digital games, simulations, and other forms of interactive teaching and inquiry-based learning. The CUNY Games Conference distills its best cutting-edge interactive presentations into a two-day event to promote and discuss game-based pedagogies in higher education, focusing particularly on non-digital learning activities that faculty can use in the classroom every day. The conference will include workshops lead by CUNY Games Organizers on ...


Å-Indentation For Non-Destructive Elastic Moduli Measurements Of Supported Ultra-Hard Ultra-Thin Films And Nanostructures, Filippo Cellini, Yang Gao, Elisa Riedo Mar 2019

Å-Indentation For Non-Destructive Elastic Moduli Measurements Of Supported Ultra-Hard Ultra-Thin Films And Nanostructures, Filippo Cellini, Yang Gao, Elisa Riedo

Publications and Research

During conventional nanoindentation measurements, the indentation depths are usually larger than 1–10 nm, which hinders the ability to study ultra-thin films (<10 >nm) and supported atomically thin two-dimensional (2D) materials. Here, we discuss the development of modulated Å-indentation to achieve sub-Å indentations depths during force-indentation measurements while also imaging materials with nanoscale resolution. Modulated nanoindentation (MoNI) was originally invented to measure the radial elasticity of multi-walled nanotubes. w, by using extremely small amplitude oscillations (<<1 Å) at high frequency, and stiff cantilevers, we show how modulated nano/Å-indentation (MoNI/ÅI) enables non-destructive measurements of the contact stiffness and indentation modulus of ultra-thin ultra-stiff films, including CVD diamond films (~1000 GPa stiffness), as well as the transverse modulus of 2D materials. Our analysis demonstrates that in presence of a standard laboratory noise floor, the signal to noise ratio of MoNI/ÅI implemented with a commercial atomic force microscope (AFM) is such that a dynamic range of 80 dB –– achievable with commercial Lock-in amplifiers –– is sufficient to observe superior indentation curves, having indentation depths as small as 0.3 Å, resolution in indentation <0.05 Å, and in normal load <0.5 nN. Being implemented on a standard AFM, this method has the potential for a broad applicability.


Translational Modeling Of Non-Invasive Electrical Stimulation, Dennis Quangvinh Truong Jan 2019

Translational Modeling Of Non-Invasive Electrical Stimulation, Dennis Quangvinh Truong

Dissertations and Theses

Seminal work in the early 2000’s demonstrated the effect of low amplitude non-invasive electrical stimulation in people using neurophysiological measures (motor evoked potentials, MEPs). Clinical applications of transcranial Direct Current Stimulation (tDCS) have since proliferated, though the mechanisms are not fully understood. Efforts to refine the technique to improve results are on-going as are mechanistic studies both in vivo and in vitro. Volume conduction models are being applied to these areas of research, especially in the design and analysis of clinical montages. However, additional research on the parameterization of models remains.

In this dissertation, Finite Element Method (FEM) models ...