Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Structures and Materials

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 44

Full-Text Articles in Engineering

Highly Reactive Energetic Films By Pre-Stressing Nano-Aluminum Particles, Michael N. Bello, Alan M. Williams, Valery I. Levitas, Nobumichi Tamura, Daniel K. Unruh, Juliusz Warzywoda, Michelle L. Pantoya Dec 2019

Highly Reactive Energetic Films By Pre-Stressing Nano-Aluminum Particles, Michael N. Bello, Alan M. Williams, Valery I. Levitas, Nobumichi Tamura, Daniel K. Unruh, Juliusz Warzywoda, Michelle L. Pantoya

Aerospace Engineering Publications

Energetic films were synthesized using stress altered nano-aluminum particles (nAl). The nAl powder was pre-stressed to examine how modified mechanical properties of the fuel particles influenced film reactivity. Pre-stressing conditions varied by quenching rate. Slow and rapid quenching rates induced elevated dilatational strain within the nAl particles that was measured using synchrotron X-ray diffraction (XRD). An analytical model for stress and strain in a nAl core–Al2O3 shell particle that includes creep in the shell and delamination at the core–shell boundary, was developed and used for interpretation of strain measurements. Results show rapid quenching induced 81% delamination at the ...


Designing Wind Turbine Rotor Blades To Enhance Energy Capture In Turbine Arrays, Benham Moghadassian, Anupam Sharma Nov 2019

Designing Wind Turbine Rotor Blades To Enhance Energy Capture In Turbine Arrays, Benham Moghadassian, Anupam Sharma

Aerospace Engineering Publications

An inverse design approach is proposed to compute wind turbine blade geometries which maximize the aggregate power output from a wind farm. An iterative inverse algorithm is used to solve the optimization problem. The algorithm seeks to minimize the target function, f = -CP,av, where CP,av is the average normalized mechanical power of all the turbines in the wind farm. An upper bound on the blade planform area, representative of the blade weight, is imposed to demonstrate how to incorporate constraints in the design process. The power coefficients (CP) of the turbines in the farm are ...


Tensorial Stress−Strain Fields And Large Elastoplasticity As Well As Friction In Diamond Anvil Cell Up To 400 Gpa, Valery I. Levitas, Mehdi Kamrani, Biao Feng Oct 2019

Tensorial Stress−Strain Fields And Large Elastoplasticity As Well As Friction In Diamond Anvil Cell Up To 400 Gpa, Valery I. Levitas, Mehdi Kamrani, Biao Feng

Valery I. Levitas

Various phenomena (fracture, phase transformations, and chemical reactions) studied under extreme pressures in diamond anvil cell are strongly affected by fields of all components of stress and plastic strain tensors. However, they could not be measured. Here, we suggest a coupled experimental−theoretical−computational approach that allowed us (using published experimental data) to refine, calibrate, and verify models for elastoplastic behavior and contact friction for tungsten (W) and diamond up to 400 GPa and reconstruct fields of all components of stress and large plastic strain tensors in W and diamond. Despite the generally accepted strain-induced anisotropy, strain hardening, and path-dependent ...


Incorporation Of Composite Defects From Ultrasonic Nde Into Cad And Fe Models, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy Oct 2019

Incorporation Of Composite Defects From Ultrasonic Nde Into Cad And Fe Models, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy

Stephen D. Holland

Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding ...


Surrogate Modeling Of Ultrasonic Simulations Using Data-Driven Methods, Xiaosong Du, Robert J. Grandin, Leifur Leifsson Oct 2019

Surrogate Modeling Of Ultrasonic Simulations Using Data-Driven Methods, Xiaosong Du, Robert J. Grandin, Leifur Leifsson

Robert Grandin

Ultrasonic testing (UT) is used to detect internal flaws in materials and to characterize material properties. In many applications, computational simulations are an important part of the inspection-design and analysis processes. Having fast surrogate models for UT simulations is key for enabling efficient inverse analysis and model-assisted probability of detection (MAPOD). In many cases, it is impractical to perform the aforementioned tasks in a timely manner using current simulation models directly. Fast surrogate models can make these processes computationally tractable. This paper presents investigations of using surrogate modeling techniques to create fast approximate models of UT simulator responses. In particular ...


Model-Assisted Probability Of Detection Of Flaws In Aluminum Blocks Using Polynomial Chaos Expansions, Xiaosong Du, Leifur Leifsson, Robert J. Grandin, William Q. Meeker, Ronald A. Roberts, Jiming Song Oct 2019

Model-Assisted Probability Of Detection Of Flaws In Aluminum Blocks Using Polynomial Chaos Expansions, Xiaosong Du, Leifur Leifsson, Robert J. Grandin, William Q. Meeker, Ronald A. Roberts, Jiming Song

Robert Grandin

Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination withmodel-assisted POD (MAPOD) methods. With the development of advanced physics-basedmethods, such as ultrasonic NDTtesting, the empirical information,needed for POD methods, can bereduced. However, performing accurate numerical simulationscan be prohibitivelytime-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the ...


Utsim2 Validation, Robert J. Grandin, Tim Gray Oct 2019

Utsim2 Validation, Robert J. Grandin, Tim Gray

Robert Grandin

The Center for NDE (CNDE) at Iowa State University has a long history of developing physics models for NDE and packaging these models into simulation tools which make the modeling capabilities accessible to CNDEs industrial sponsors. Recent work at CNDE has led to the development of a new ultrasonic simulation package, UTSim2, which aims to continue this tradition of supporting industrial application of CNDE models. In order to meet this goal, UTSim2 has been designed as an extensible software package which can support previously-developed physics models as well as future models yet to be developed. Initial work has focused on ...


Incorporation Of Composite Defects From Ultrasonic Nde Into Cad And Fe Models, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy Oct 2019

Incorporation Of Composite Defects From Ultrasonic Nde Into Cad And Fe Models, Onur Rauf Bingol, Bryan Schiefelbein, Robert J. Grandin, Stephen D. Holland, Adarsh Krishnamurthy

Robert Grandin

Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding ...


Tensorial Stress−Strain Fields And Large Elastoplasticity As Well As Friction In Diamond Anvil Cell Up To 400 Gpa, Valery I. Levitas, Mehdi Kamrani, Biao Feng Oct 2019

Tensorial Stress−Strain Fields And Large Elastoplasticity As Well As Friction In Diamond Anvil Cell Up To 400 Gpa, Valery I. Levitas, Mehdi Kamrani, Biao Feng

Aerospace Engineering Publications

Various phenomena (fracture, phase transformations, and chemical reactions) studied under extreme pressures in diamond anvil cell are strongly affected by fields of all components of stress and plastic strain tensors. However, they could not be measured. Here, we suggest a coupled experimental−theoretical−computational approach that allowed us (using published experimental data) to refine, calibrate, and verify models for elastoplastic behavior and contact friction for tungsten (W) and diamond up to 400 GPa and reconstruct fields of all components of stress and large plastic strain tensors in W and diamond. Despite the generally accepted strain-induced anisotropy, strain hardening, and path-dependent ...


Evaluation Of The Fidelity Of Feature Descriptor-Based Specimen Tracking For Automatic Nde Data Integration, Rafael Radkowski, Stephen D. Holland, Robert J. Grandin Sep 2019

Evaluation Of The Fidelity Of Feature Descriptor-Based Specimen Tracking For Automatic Nde Data Integration, Rafael Radkowski, Stephen D. Holland, Robert J. Grandin

Robert Grandin

This research addresses inspection location tracking in the field of nondestructive evaluation (NDE) using a computer vision technique to determine the position and orientation of typical NDE equipment in a test setup. The objective is the tracking accuracy for typical NDE equipment to facilitate automatic NDE data integration. Since the employed tracking technique relies on surface curvatures of an object of interest, the accuracy can be only experimentally determined. We work with flash-thermography and conducted an experiment in which we tracked a specimen and a thermography flash hood, measured the spatial relation between both, and used the relation as input ...


Statistical Methods For Probability Of Detection In Structural Health Monitoring, William Q. Meeker, Dennis Roach, Seth S. Kessler Sep 2019

Statistical Methods For Probability Of Detection In Structural Health Monitoring, William Q. Meeker, Dennis Roach, Seth S. Kessler

Statistics Publications

There is much interest in the potential to use Structural Health Monitoring (SHM) technology to augment traditional Nondestructive Evaluation (NDE) methods to improve safety, increase asset availability, and reduce maintenance and inspection costs. SHM has the potential to be used in many areas of application including critical components in aircraft and pipelines. Probability of detection (POD) plays a critical role in aircraft structural integrity programs. As such, there has been a high interest in developing methods that can be used to assess POD in SHM applications. In contrast to traditional NDE laboratory experiments to assess POD that involve a set ...


A Comparison Of Crushing Parameters Of Graphite Composite Thin-Walled Cylinders Cured In Low And High Pressures, Trenton John Matson Sep 2019

A Comparison Of Crushing Parameters Of Graphite Composite Thin-Walled Cylinders Cured In Low And High Pressures, Trenton John Matson

Master's Theses and Project Reports

Out-of-Autoclave (OoA) processes for manufacturing aerospace-grade parts needs to be better understood to further the development and success of industries that are manufacturing reusable launch vehicles, military and commercial aircraft, and spacecraft. Overcoming the performance limitations associated with OoA, also known as low-pressure prepreg curing, methods (void count, energy absorption, etc.) will help decrease the costs associated with aerospace composite manufacturing and the negative environmental effects correlated with high-pressure composite curing methods. Experimental, theoretical, and numerical approaches are used to explore both low and high-pressure curing cycles and how the two different processes affect final cured parts. Quasi-static uniaxial compression ...


Micrometeoroid Impacts On Periodic Spacecraft Structures, Victoria West, Luis Buades, Hanson-Lee Harjono Aug 2019

Micrometeoroid Impacts On Periodic Spacecraft Structures, Victoria West, Luis Buades, Hanson-Lee Harjono

The Journal of Purdue Undergraduate Research

No abstract provided.


Twinning-Induced Pseudoelastic Behavior In (Mow)85(Tati)7.5zr7.5, Aayush Sharma, Valery I. Levitas, Prashant Signh, Anup Basak, Ganesh Balasubramanian, Duane D. Johnson Aug 2019

Twinning-Induced Pseudoelastic Behavior In (Mow)85(Tati)7.5zr7.5, Aayush Sharma, Valery I. Levitas, Prashant Signh, Anup Basak, Ganesh Balasubramanian, Duane D. Johnson

Ganesh Balasubramanian

We provide a critical atomistic evidence of pseudoelastic behavior in complex solid-solution BCC Mo-W-Ta-Ti-Zr alloy. Prior to this work, only limited single-crystal BCC solids of pure metals and quaternary alloys have shown pseudoelastic behavior at low temperatures and high strain rates. The deformation mechanisms investigated using classical molecular simulations under tensile-compressive loading reveal temperature-dependent pseudoelastic behavior aided by twinning during the loading-unloading cycle. The pseudoelasticity is found to be independent of loading directions with identical cyclic deformation characteristics during uniaxial loading. Additionally, temperature variation from 77 to 1500 K enhances the elastic strain recovery in the alloy.


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and ...


Manipulating Fiber Orientation For The Reduction Of Warpage In Carbon Fiber Composite Sandwich Panels, Landon Burnley, Gabrielle Correia Jul 2019

Manipulating Fiber Orientation For The Reduction Of Warpage In Carbon Fiber Composite Sandwich Panels, Landon Burnley, Gabrielle Correia

Materials Engineering

Safran Cabin (Santa Maria, CA), previously known as Zodiac Aerospace, designs and manufactures interior cabin components for private and commercial aircraft. Carbon fiber face sheets have recently been incorporated in their overhead luggage bin assemblies which utilize a composite sandwich panel design, in order to provide additional stiffness to the previous glass fiber sandwich panels. Since the introduction of carbon fiber in these luggage bin panels, Safran has experienced an increase in warpage during manufacturing. When inspected by quality control, the panels are tested mimicking how they are installed in aircraft. If the panels do not meet specifications, the warped ...


The Effects Of Atomic Oxygen On Patch Antenna Performance And Lifetime, Max J. Barta Jul 2019

The Effects Of Atomic Oxygen On Patch Antenna Performance And Lifetime, Max J. Barta

Master's Theses and Project Reports

The space environment is a volatile and challenging place for satellites to survive in. For Low Earth Orbiting (LEO) satellites, atomic oxygen (AO) is a constant corrosive effect that degrades the outer surface of satellites over long durations. Atomic oxygen exists in the atmosphere between 180 and 675 km and has a relatively high energy at 4.5 eV, which allows AO to break molecular bonds in materials on the surfaces of spacecraft. As the number and complexity of CubeSat missions increase, there is an increased risk that AO degradation on commercial off the shelf parts (COTS), such as antenna ...


Twinning-Induced Pseudoelastic Behavior In (Mow)85(Tati)7.5zr7.5, Aayush Sharma, Valery I. Levitas, Prashant Signh, Anup Basak, Ganesh Balasubramanian, Duane D. Johnson Jun 2019

Twinning-Induced Pseudoelastic Behavior In (Mow)85(Tati)7.5zr7.5, Aayush Sharma, Valery I. Levitas, Prashant Signh, Anup Basak, Ganesh Balasubramanian, Duane D. Johnson

Duane D. Johnson

We provide a critical atomistic evidence of pseudoelastic behavior in complex solid-solution BCC Mo-W-Ta-Ti-Zr alloy. Prior to this work, only limited single-crystal BCC solids of pure metals and quaternary alloys have shown pseudoelastic behavior at low temperatures and high strain rates. The deformation mechanisms investigated using classical molecular simulations under tensile-compressive loading reveal temperature-dependent pseudoelastic behavior aided by twinning during the loading-unloading cycle. The pseudoelasticity is found to be independent of loading directions with identical cyclic deformation characteristics during uniaxial loading. Additionally, temperature variation from 77 to 1500 K enhances the elastic strain recovery in the alloy.


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites ...


Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator Jun 2019

Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator

Materials Engineering

PCC Structurals, an industry leader in superalloy investment castings, has observed inconsistencies in the stress rupture performance of polycrystalline nickel-based superalloy PWA 1455. PCC has changed their casting parameters to reduce the thermal gradient during cooling but have been unable to correlate these changes with an increase in stress rupture elongation. Metallographic examination of past samples indicated microstructures composed of non- equiaxed dendritic grains with mean diameter of .021 inches along the test axis. A similar study on polycrystalline superalloys has indicated that excessive superheat temperatures above the liquidus can result in large grains identical to those observed, limiting the ...


Effects Of Corrugations On Stiffness Properties Of Composite Beams For Structural Applications, Jane Xiao Jun 2019

Effects Of Corrugations On Stiffness Properties Of Composite Beams For Structural Applications, Jane Xiao

Master's Theses and Project Reports

Composites have high strength-to-weight ratios, which is particularly desired for applications with weight restrictions. Common composite materials such as carbon fiber reinforced plastic (CF) and fiber glass reinforced plastic (FG) were used in this research. While composite materials possess high stiffness and strength properties, the stiffness of composite laminates may be maximized by changing the geometry. By adding corrugations, the flexural stiffness is increased in one direction compared to the stiffness of a flat part with the same amount of material. Thus, stiffness increases without a change in weight. The primary goal of this research was to investigate the stiffness ...


Atomic Oxygen Effects On Particulate Contamination And Short Beam Strength Of Carbon Composites, Marlee K. Litzinger Jun 2019

Atomic Oxygen Effects On Particulate Contamination And Short Beam Strength Of Carbon Composites, Marlee K. Litzinger

Master's Theses and Project Reports

In order to design a successful space system, the unique challenges of the space environment it will operate in must be considered during the design process. Atomic oxygen (AO) is a detrimental environmental effect found in Low Earth Orbit (LEO) that affects spacecraft surfaces by oxidizing and eroding material over time, particularly polymers. Carbon fiber/epoxy composites are a commonly used spacecraft material affected by AO exposure. Carbon composites are used as a structural material, such as on solar panels; their large surface area therefore is a potential contamination source to sensitive components. The Space Environments and Testing Lab at ...


Investigation Of Nondestructive Testing Methods For Friction Stir Welding, Hossein Taheri, Margaret Kilpatrick, Matthew Norvalls, Warren Harper, Lucas Koester, Timothy Bigelow, Leonard J. Bond May 2019

Investigation Of Nondestructive Testing Methods For Friction Stir Welding, Hossein Taheri, Margaret Kilpatrick, Matthew Norvalls, Warren Harper, Lucas Koester, Timothy Bigelow, Leonard J. Bond

Electrical and Computer Engineering Publications

Friction stir welding is a method of materials processing that enables the joining of similar and dissimilar materials. The process, as originally designed by The Welding Institute (TWI), provides a unique approach to manufacturing—where materials can be joined in many designs and still retain mechanical properties that are similar to, or greater than, other forms of welding. This process is not free of defects that can alter, limit, and occasionally render the resulting weld unusable. Most common amongst these defects are kissing bonds, wormholes and cracks that are often hidden from visual inspection. To identify these defects, various nondestructive ...


Validation Of Proposed Metrics For Two-Body Abrasion Scratch Test Analysis Standards, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street May 2019

Validation Of Proposed Metrics For Two-Body Abrasion Scratch Test Analysis Standards, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street

Ryan L. Kobrick

The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed “Zone of Interaction” (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width as currently defined by the ASTM G 171 Standard. The ZOI has been found to be at least twice the size of a standard width measurement, in some cases considerably greater, indicating that at least half of the disturbed surface ...


Validation Of Proposed Metrics For Two-Body Abrasion Scratch Test Analysis Standards: In Principle, Any Scratch Can Be Analyzed By This Method, Kenneth W. Street, Ryan L. Kobrick, David M. Klaus May 2019

Validation Of Proposed Metrics For Two-Body Abrasion Scratch Test Analysis Standards: In Principle, Any Scratch Can Be Analyzed By This Method, Kenneth W. Street, Ryan L. Kobrick, David M. Klaus

Ryan L. Kobrick

Abrasion of mechanical components and fabrics by soil on Earth is typically minimized by the effects of atmosphere and water. Potentially abrasive particles lose sharp and pointed geometrical features through erosion. In environments where such erosion does not exist, such as the vacuum of the Moon, particles retain sharp geometries associated with fracturing of their parent particles by micrometeorite impacts. The relationship between hardness of the abrasive and that of the material being abraded is well understood, such that the abrasive ability of a material can be estimated as a function of the ratio of the hardness of the two ...


Developing Abrasion Test Standards For Evaluating Lunar Construction Materials, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street May 2019

Developing Abrasion Test Standards For Evaluating Lunar Construction Materials, Ryan L. Kobrick, David M. Klaus, Kenneth W. Street

Ryan L. Kobrick

Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards ...


System Architecture Design And Development For A Reusable Lunar Lander, Chad Batten, Camille E. Bergin, Aaron Crigger, Darryl Harris, Gillian Suzanne Mcglothin May 2019

System Architecture Design And Development For A Reusable Lunar Lander, Chad Batten, Camille E. Bergin, Aaron Crigger, Darryl Harris, Gillian Suzanne Mcglothin

Chancellor’s Honors Program Projects

No abstract provided.


Model-Assisted Validation Of A Strain-Based Dense Sensor Network, Jin Yan, Xiaosong Du, Simon Laflamme, Leifur Leifsson, Chao Hu, An Chen Mar 2019

Model-Assisted Validation Of A Strain-Based Dense Sensor Network, Jin Yan, Xiaosong Du, Simon Laflamme, Leifur Leifsson, Chao Hu, An Chen

Civil, Construction and Environmental Engineering Publications

Recent advances in sensing are empowering the deployment of inexpensive dense sensor networks (DSNs) to conduct structural health monitoring (SHM) on large-scale structural and mechanical systems. There is a need to develop methodologies to facilitate the validation of these DSNs. Such methodologies could yield better designs of DSNs, enabling faster and more accurate monitoring of states for enhancing SHM. This paper investigates a model-assisted approach to validate a DSN of strain gauges under uncertainty. First, an approximate physical representation of the system, termed the physics-driven surrogate, is created based on the sensor network configuration. The representation consists of a state-space ...


Piezoelectric Sensor Crack Detection On Airframe Systems, Kevin J. Lin Mar 2019

Piezoelectric Sensor Crack Detection On Airframe Systems, Kevin J. Lin

Theses and Dissertations

In 2008, the Department of Defense published a guidebook for a methodology named Condition-Based Maintenance Plus (CBM+) which capabilities include improving productivity, shortening maintenance cycles, lowering costs, and increasing availability and reliability. This push replaces existing inspection criteria, often conducted as non-destructive testing (NDT), with structural health monitoring (SHM) systems. The SHM system addressed utilizes guided Lamb waves generated by piezoelectric wafer active sensors (PWAS) to detect the existence, size, and location of damage from through-thickness cracks around a rivet hole. The SHM field lacks an experiment testing how small changes in receiver sensor distances affect damage detection. In addition ...


Initial Stage Of Fluid-Structure Interaction Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves Mar 2019

Initial Stage Of Fluid-Structure Interaction Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves

Theses and Dissertations

The analysis of a celestial icosahedron geometry is considered as a potential design for a Vacuum Lighter than Air Vehicle (VLTAV). The goal of the analysis is ultimately to understand the initial fluid-structure interaction of the VLTAV and the surrounding airflow. Up to this point, previous research analyzed the celestial icosahedron VLTAV in relation to withstanding a symmetric sea-level pressure applied to the membrane of the structure. This scenario simulates an internal vacuum being applied in the worst-case atmospheric environmental condition. The next step in analysis is to determine the aerodynamic effects of the geometry. The experimental setup for obtaining ...