Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Intelligent Software Tools For Recruiting, Swatee B. Kulkarni, Xiangdong Che Jul 2019

Intelligent Software Tools For Recruiting, Swatee B. Kulkarni, Xiangdong Che

Journal of International Technology and Information Management

In this paper, we outline how recruiting and talent acquisition gained importance within HRM field, then give a brief introduction to the newest tools used by the professionals for recruiting and lastly, describe the Artificial Intelligence-based tools that have started playing an increasingly important role. We also provide further research suggestions for using artificial intelligence-based tools to make recruiting more efficient and cost-effective.


Identifying Fake News Using Emotion Analysis, Brady Gilleran May 2019

Identifying Fake News Using Emotion Analysis, Brady Gilleran

Computer Science and Computer Engineering Undergraduate Honors Theses

This paper presents research applying Emotional Analysis to “Fake News” and “Real News” articles to investigate whether or not there is a difference in the emotion used in these two types of news articles. The paper reports on a dataset for Fake and Real News that we created, and the natural language processing techniques employed to process the collected text. We use a lexicon that includes predefined words for eight emotions (anger, anticipation, disgust, fear, surprise, sadness, joy, trust) to measure the emotional impact in each of these eight dimensions. The results of the emotion analysis are used as features ...


Recipe For Disaster, Zac Travis Mar 2019

Recipe For Disaster, Zac Travis

MFA Thesis Exhibit Catalogs

Today’s rapid advances in algorithmic processes are creating and generating predictions through common applications, including speech recognition, natural language (text) generation, search engine prediction, social media personalization, and product recommendations. These algorithmic processes rapidly sort through streams of computational calculations and personal digital footprints to predict, make decisions, translate, and attempt to mimic human cognitive function as closely as possible. This is known as machine learning.

The project Recipe for Disaster was developed by exploring automation in technology, specifically through the use of machine learning and recurrent neural networks. These algorithmic models feed on large amounts of data as ...


Less Is More: Beating The Market With Recurrent Reinforcement Learning, Louis Kurt Bernhard Steinmeister Jan 2019

Less Is More: Beating The Market With Recurrent Reinforcement Learning, Louis Kurt Bernhard Steinmeister

Masters Theses

"Multiple recurrent reinforcement learners were implemented to make trading decisions based on real and freely available macro-economic data. The learning algorithm and different reinforcement functions (the Differential Sharpe Ratio, Differential Downside Deviation Ratio and Returns) were revised and the performances were compared while transaction costs were taken into account. (This is important for practical implementations even though many publications ignore this consideration.) It was assumed that the traders make long-short decisions in the S&P500 with complementary 3-month treasury bill investments. Leveraged positions in the S&P500 were disallowed. Notably, the Differential Sharpe Ratio and the Differential Downside Deviation Ratio ...


Transparency And Algorithmic Governance, Cary Coglianese, David Lehr Jan 2019

Transparency And Algorithmic Governance, Cary Coglianese, David Lehr

Faculty Scholarship at Penn Law

Machine-learning algorithms are improving and automating important functions in medicine, transportation, and business. Government officials have also started to take notice of the accuracy and speed that such algorithms provide, increasingly relying on them to aid with consequential public-sector functions, including tax administration, regulatory oversight, and benefits administration. Despite machine-learning algorithms’ superior predictive power over conventional analytic tools, algorithmic forecasts are difficult to understand and explain. Machine learning’s “black-box” nature has thus raised concern: Can algorithmic governance be squared with legal principles of governmental transparency? We analyze this question and conclude that machine-learning algorithms’ relative inscrutability does not pose ...


Transfer Learning Approach To Multiclass Classification Of Child Facial Expressions, Megan A. Witherow, Manar D. Samad, Khan M. Iftekharuddin Jan 2019

Transfer Learning Approach To Multiclass Classification Of Child Facial Expressions, Megan A. Witherow, Manar D. Samad, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

The classification of facial expression has been extensively studied using adult facial images which are not appropriate ground truths for classifying facial expressions in children. The state-of-the-art deep learning approaches have been successful in the classification of facial expressions in adults. A deep learning model may be better able to learn the subtle but important features underlying child facial expressions and improve upon the performance of traditional machine learning and feature extraction methods. However, unlike adult data, only a limited number of ground truth images exist for training and validating models for child facial expression classification and there is a ...