Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Molecular, Cellular, and Tissue Engineering

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 53

Full-Text Articles in Engineering

Micrococcal-Nuclease-Triggered On-Demand Release Of Vancomycin From Intramedullary Implant Coating Eradicates Staphylococcus Aureus Infection In Mouse Femoral Canals, Ananta Ghimire, Jordan D. Skelly, Jie Song Dec 2019

Micrococcal-Nuclease-Triggered On-Demand Release Of Vancomycin From Intramedullary Implant Coating Eradicates Staphylococcus Aureus Infection In Mouse Femoral Canals, Ananta Ghimire, Jordan D. Skelly, Jie Song

Orthopedics and Physical Rehabilitation Publications

Preventing orthopedic implant-associated bacterial infections remains a critical challenge. Current practices of physically blending high-dose antibiotics with bone cements is known for cytotoxicity while covalently tethering antibiotics to implant surfaces is ineffective in eradicating bacteria from the periprosthetic tissue environment due to the short-range bactericidal actions, which are limited to the implant surface. Here, we covalently functionalize poly(ethylene glycol) dimethacrylate hydrogel coatings with vancomycin via an oligonucleotide linker sensitive to Staphylococcus aureus (S. aureus) micrococcal nuclease (MN) (PEGDMA-Oligo-Vanco). This design enables the timely release of vancomycin in the presence of S. aureus to kill the bacteria both on the ...


The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun Dec 2019

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) bioscaffolds are a promising platform for the delivery of pro-regenerative cell populations with the goal of promoting adipose tissue regeneration. The current study investigated the effects of seeding DAT bioscaffolds with syngeneic bone marrow-derived macrophages and/or adipose-derived stromal cells (ASCs) on in vivo soft tissue regeneration. Methods were established to derive the macrophages from MacGreen mice, which were dynamically seeded onto the DAT scaffolds alone or in combination with ASCs. Seeded and unseeded scaffolds were implanted subcutaneously into C57Bl/6 mice. At 2 and 4 weeks, cell infiltration, angiogenesis, and adipogenesis were analyzed through histology ...


Selection Of An Efficient Aav Vector For Robust Cns Transgene Expression, Killian S. Hanlon, Miguel Sena-Esteves, Eloise Hudry, Casey A. Maguire Dec 2019

Selection Of An Efficient Aav Vector For Robust Cns Transgene Expression, Killian S. Hanlon, Miguel Sena-Esteves, Eloise Hudry, Casey A. Maguire

Open Access Articles

Adeno-associated virus (AAV) capsid libraries have generated improved transgene delivery vectors. We designed an AAV library construct, iTransduce, that combines a peptide library on the AAV9 capsid with a Cre cassette to enable sensitive detection of transgene expression. After only two selection rounds of the library delivered intravenously in transgenic mice carrying a Cre-inducible fluorescent protein, we flow sorted fluorescent cells from brain, and DNA sequencing revealed two dominant capsids. One of the capsids, termed AAV-F, mediated transgene expression in the brain cortex more than 65-fold (astrocytes) and 171-fold (neurons) higher than the parental AAV9. High transduction efficiency was sex-independent ...


In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill Dec 2019

In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill

Theses and Dissertations

Twist transcription factor is often overexpressed in aggressive tumors. Although needed in early embryonic development for organogenesis, Twist is known to induce an epithelial to mesenchymal transition in cells. In cancer, epithelial to mesenchymal transitions can lead to increased motility and invasiveness. It has also been linked to metabolic reprogramming and increased metastatic risk. Furthermore, metabolic preferences can increase proliferation, enhance metastatic potential, and influence the site of metastasis. We hypothesize that Twist directly affects the metabolism of cancer cells. We expect to see in vivo what we have seen in vitro; Twist overexpression should promote a shift away from ...


#5 - Identifying Cellular Mechano-Biological Responses To Peg-Based Hydrogels, Ian Smith, Karen E. Martin, Hannah S. Theriault Nov 2019

#5 - Identifying Cellular Mechano-Biological Responses To Peg-Based Hydrogels, Ian Smith, Karen E. Martin, Hannah S. Theriault

Georgia Undergraduate Research Conference (GURC)

Cells sense and respond to mechanical stimuli from their external environment through a process called mechanotransduction. Focal adhesions are integrin-containing, multiprotein structures through which mechanical force is transmitted between the extracellular matrix and the interacting cell. Cells convert the transmitted force into biological responses including migration, proliferation and differentiation. The Garcia lab has previously engineered an integrin-specific hydrogel system resulting in changes in mesenchymal stem cell (MSC) gene expression, secretome, and ultimately regenerative capacity in a murine bone repair model. However, the mechano-biological mechanism driving this cell response to varying hydrogel biophysical and biochemical properties has yet to be studied ...


Synthesis And Secretome Release By Human Bone Marrow Mesenchymal Stem Cell Spheroids Within Three-Dimensional Collagen Hydrogels: Integrating Experiments And Modelling, Jyotsna Joshi, Mohammadreza Dehghan Abnavi, Chandrasekhar R. Kothapalli Oct 2019

Synthesis And Secretome Release By Human Bone Marrow Mesenchymal Stem Cell Spheroids Within Three-Dimensional Collagen Hydrogels: Integrating Experiments And Modelling, Jyotsna Joshi, Mohammadreza Dehghan Abnavi, Chandrasekhar R. Kothapalli

Chemical & Biomedical Engineering Faculty Publications

Myocardial infarction results in loss of cardiac cell types, inflammation, extracellular matrix (ECM) degradation, and fibrotic scar. Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) is being explored as they could differentiate into cardiomyocyte-like cells, integrate into host tissue, and enhance resident cell activity. The ability of these cells to restore lost ECM, remodel the inflammatory scar tissue, and repair the injured myocardium remains unexplored. We here elucidated the synthesis and deposition of ECM (e.g., elastin, sulfated glycosaminoglycans, hyaluronan, collagen type III, laminin, fibrillin, lysyl oxidase, and nitric oxide synthases), matrix metalloproteinases (MMPs) and their inhibitors (TIMPs), and other ...


Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma Sep 2019

Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma

Electronic Thesis and Dissertation Repository

Biomaterials-based therapies targeting the nucleus pulposus (NP) have the potential to promote regeneration and restore mechanical function to the intervertebral disc. This study developed composite hydrogels incorporating decellularized NP (DNP) and assessed its effects on viability, retention and differentiation of U-CH1 cells, an NP progenitor-like cell line. A minimal protocol was developed to decellularize bovine NP that reduced nuclear content while preserving key extracellular matrix components predicted to be favourable for bioactivity. The resulting DNP demonstrated cell-instructive effects, supporting U-CH1 viability and retention within the hydrogels, and promoted the differentiation of the progenitor-like cells towards an NP-like phenotype. These studies ...


Formation Of A Vascular Regenerative Microenvironment Within Implantable Human Decellularized Adipose Tissue Bioscaffolds, Christopher Leclerc Sep 2019

Formation Of A Vascular Regenerative Microenvironment Within Implantable Human Decellularized Adipose Tissue Bioscaffolds, Christopher Leclerc

Electronic Thesis and Dissertation Repository

Cellular therapies targeted at stimulating therapeutic angiogenesis in individuals with critical limb ischemia (CLI) have been under intense investigation. Hematopoietic progenitor cells (HPC) derived from umbilical cord blood have been previously shown to support limb revascularization in animal models of CLI, despite limited cell survival at the site of ischemia. This study attempted to improve HPC survival after transplantation and prolong pro-angiogenic function using human decellularized adipose tissue (hDAT) as a novel cell delivery platform. Compared to HPC conventionally grown on tissue-cultured plastic, hDAT scaffolds were shown to promote viability and proliferation of seeded HPC, and had cell- instructive effects ...


Design, Construction And Application Of A Home-Built, Two-Photon Microscope, William P. Breeding Aug 2019

Design, Construction And Application Of A Home-Built, Two-Photon Microscope, William P. Breeding

Electronic Theses and Dissertations

Two-photon microscopy (TPM) is a powerful, versatile imaging modality for the study of biological systems. This thesis overviews the relevant physics involved in TPM, design considerations and process of constructing a home-built, two-photon microscope, and provides a set of procedures to operate the system. Furthermore, this work explores several applications of TPM through the study of single-cell metabolism and imaging the cellular-material interface. Explored in particular depth was the imaging of cellulose nanofiber (CNF) materials, with the goal of understanding the three-dimensional nature of fibroblast cell growth when embedded within the materials. This work uncovered several optical properties of CNF ...


Identifying Extracellular Matrix Protein Turnover Rates For Tissue Engineers, Alita F. Miller Aug 2019

Identifying Extracellular Matrix Protein Turnover Rates For Tissue Engineers, Alita F. Miller

The Journal of Purdue Undergraduate Research

No abstract provided.


Genome-Edited Animals Are Not Transgenic Animals: Moving Toward Responsible Research And Innovation With New Biotechnologies, Yvie Yao Aug 2019

Genome-Edited Animals Are Not Transgenic Animals: Moving Toward Responsible Research And Innovation With New Biotechnologies, Yvie Yao

Minnesota Journal of Law, Science & Technology

No abstract provided.


Generation Of A Ccl2 Knockout Using Crispr/Cas9 And Lipid Mediated Transfection In Ct-26 Murine Colon Carcinoma Cells, Emma Sullivan Aug 2019

Generation Of A Ccl2 Knockout Using Crispr/Cas9 And Lipid Mediated Transfection In Ct-26 Murine Colon Carcinoma Cells, Emma Sullivan

Biomedical Engineering Undergraduate Honors Theses

CCL2 is an inflammatory mediator that is released by tumor cells to activate and direct immune cell species, especially macrophages, to inflammatory sites within the body. The goal of this project was to successfully generate knockout the CCL2 ligand gene using a CRISPR/Cas9 complex delivered via lipid mediated transfection. The sgRNA and Cas9 mRNA were introduced into the cells via lipid-mediated transfection. The cells were incubated for 4 days, before being analyzed using PCR and gel electrophoresis. We expected to see one band on the first gel and two bands on the second gel. Two bands appeared on the ...


Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts Aug 2019

Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts

Theses and Dissertations

Volumetric muscle loss overwhelms skeletal muscle’s ordinarily capable regenerative machinery, resulting in fibrosis and severe functional deficits which have defied clinical repair strategies. My work spans the design and preclinical evaluation of implants intended to drive the cell community of injured muscle toward a regenerative state, as well as the development of an understanding of the molecular responses of this cell community to biomaterial interventions. I demonstrate a new class of biomaterial by leveraging the productive capacity of sacrificial hollow fiber membrane cell culture; I show specifically that unique threads of whole extracellular matrix can be isolated by solvent ...


Mechanisms Of Reduced Vascular Tone Following Arteriogenesis Induced By Femoral Artery Ligation, Christopher Hatch Aug 2019

Mechanisms Of Reduced Vascular Tone Following Arteriogenesis Induced By Femoral Artery Ligation, Christopher Hatch

Biomedical Engineering

The presence of a developed, native collateral network can decrease the severity of ischemic injury proceeding arterial occlusion. The collateral network must under arteriogenesis to enlarge and increase blood flow to the ischemic region. Although there has been tremendous effort attempting to understand the mechanisms of arteriogenesis, no therapies have been successful in improving patient outcome. To better understand the mechanisms involved in arteriogenesis, the effect of nitric oxide production, myogenic tone, and a-adrenergic receptors were evaluated as these have been identified as playing an important role in vascular injury. Arteriogenesis was induced by ligating the femoral artery between the ...


Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim Aug 2019

Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim

Theses and Dissertations

Volumetric muscle loss (VML) is a traumatic injury in skeletal muscle resulting in the bulk loss of more than 20% of the muscle’s volume. Included in the bulk loss of muscle is the skeletal muscle niche comprised of nerve bundles, vasculature, local progenitor cells, basal lamina, and muscle fibers, overwhelming innate repair mechanisms. The hallmark of VML injury is the excessive accumulation of non-contractile, fibrotic tissue and permanent functional deficits. Though predominant in the younger demographic, the elderly population is also captured within VML injuries. There are many factors that change with aging in skeletal muscle that may further ...


Tauopathies, Novel Optogenetic Tools, And The Future Of Artificial Intellience In Medicine., Jessica L. Binder Jul 2019

Tauopathies, Novel Optogenetic Tools, And The Future Of Artificial Intellience In Medicine., Jessica L. Binder

Biomedical Sciences ETDs

To this day, there is no cure for Alzheimer’s disease (AD) and related dementias (ADRD). With the daunting rise at an exponential rate of ADRD burden and related deaths, the necessity to find a new line of attack is vital. Pathological accumulation of microtubule associated protein tau in neurons is a major neuropathological hallmark of Alzheimer’s disease (AD) and related tauopathies. Attempts have been made to promote clearance of pathological tau (p-Tau) from neurons via autophagy. Transcription factor EB (TFEB) has shown to clear p-Tau from neurons via autophagy. However, sustained TFEB activation and autophagy can create burden ...


Accounting For Host Cell Protein Behavior In Anion-Exchange Chromatography, Ryan K. Swanson, Ruo Xu, Daniel S. Nettleton, Charles Glatz Jun 2019

Accounting For Host Cell Protein Behavior In Anion-Exchange Chromatography, Ryan K. Swanson, Ruo Xu, Daniel S. Nettleton, Charles Glatz

Dan Nettleton

Host cell proteins (HCP) are a problematic set of impurities in downstream processing (DSP) as they behave most similarly to the target protein during separation. Approaching DSP with the knowledge of HCP separation behavior would be beneficial for the production of high purity recombinant biologics. Therefore, this work was aimed at characterizing the separation behavior of complex mixtures of HCP during a commonly used method: anion-exchange chromatography (AEX). An additional goal was to evaluate the performance of a statistical methodology, based on the characterization data, as a tool for predicting protein separation behavior. Aqueous two-phase partitioning followed by two-dimensional electrophoresis ...


Developing A Control System To Better Understand The Effects Of Pyruvate Decarboxylase Activity On Clostridium Thermocellum Metabolism, Nicholas Cervenka Jun 2019

Developing A Control System To Better Understand The Effects Of Pyruvate Decarboxylase Activity On Clostridium Thermocellum Metabolism, Nicholas Cervenka

ENGS 88 Honors Thesis (AB Students)

In order for cellulosic biofuels from Clostridium thermocellum to be commercially viable, the ethanol yield and titer of the microbe must be increased. To accomplish this, it has been suggested to introduce the Pyruvate Decarboxylase (PDC) enzyme into C. thermocellum. In order to demonstrate effects on ethanol production by PDC prior to genetic modification, a cell free system (CFS) has been developed. A purified enzyme system was developed with the CFS to function as a control. Using the purified enzyme system, PDC from Saccharomyces cerevisiae was demonstrated to be a good candidate for further testing in the CFS.


Generation Of Functional Human Adipose Tissue In Mice From Primed Progenitor Cells, Raziel Rojas-Rodriguez, Jorge Lujan-Hernandez, So Yun Min, Tiffany Desouza, Patrick Teebagy, Anand Desai, Heather Tessier, Robert Slamin, Leah Siegel-Reamer, Cara Berg, Angel Baez, Janice F. Lalikos, Silvia Corvera Jun 2019

Generation Of Functional Human Adipose Tissue In Mice From Primed Progenitor Cells, Raziel Rojas-Rodriguez, Jorge Lujan-Hernandez, So Yun Min, Tiffany Desouza, Patrick Teebagy, Anand Desai, Heather Tessier, Robert Slamin, Leah Siegel-Reamer, Cara Berg, Angel Baez, Janice F. Lalikos, Silvia Corvera

Senior Scholars Program

Adipose tissue (AT) is used extensively in reconstructive and regenerative therapies, but transplanted fat often undergoes cell death, leading to inflammation, calcification, and requirement for further revision surgery. Previously, we have found that mesenchymal progenitor cells within human AT can proliferate in three-dimensional culture under proangiogenic conditions. These cells (primed ADipose progenitor cells, PADS) robustly differentiate into adipocytes in vitro (ad-PADS). The goal of this study is to determine whether ad-PADS can form structured AT in vivo, with potential for use in surgical applications. Grafts formed from ad-PADS were compared to grafts formed from AT obtained by liposuction after implantation ...


Evaluation Of Human Umbilical Vein Endothelial Cells In Blood Vessel Mimics Through Changes In Gene Expression And Caspase Activity, Conor Charles Hedigan Jun 2019

Evaluation Of Human Umbilical Vein Endothelial Cells In Blood Vessel Mimics Through Changes In Gene Expression And Caspase Activity, Conor Charles Hedigan

Master's Theses

Blood vessel mimics (BVMs) are simple tissue engineered blood vessel constructs intended for preclinical testing of vascular devices. This thesis developed and implemented methods to characterize two of these components. The first aim of this thesis investigated the effect of cell culture duration and flow conditions on endothelial cell gene expression, especially regarding endothelial-to-mesenchymal transition (EndMT). A trend of decreased endothelial marker gene expression and increased mesenchymal marker gene expression would indicate EndMT. qPCR analysis revealed that increased cell culture duration did not result in EndMT, and in fact increased endothelial marker expression as cell culture duration increased. Disturbed flow ...


Predicting Tgf-Β-Induced Epithelial-Mesenchymal Transition Using Data Assimilation, Mario J. Mendez, Matthew J. Hoffman, Elizabeth M. Cherry, Dr. Christopher Lemmon, Seth Weinberg May 2019

Predicting Tgf-Β-Induced Epithelial-Mesenchymal Transition Using Data Assimilation, Mario J. Mendez, Matthew J. Hoffman, Elizabeth M. Cherry, Dr. Christopher Lemmon, Seth Weinberg

Biology and Medicine Through Mathematics Conference

No abstract provided.


The Effect Of Heterobifunctional Crosslinkers On Hema Hydrogel Modulus And Toughness, Elizabeth M. Boazak, Vaughn K. Greene Jr., Debra T. Auguste May 2019

The Effect Of Heterobifunctional Crosslinkers On Hema Hydrogel Modulus And Toughness, Elizabeth M. Boazak, Vaughn K. Greene Jr., Debra T. Auguste

Publications and Research

The use of hydrogels in load bearing applications is often limited by insufficient toughness. 2-Hydroxyethyl methacrylate (HEMA) based hydrogels are appealing for translational work, as they are affordable and the use of HEMA is FDA approved. Furthermore, HEMA is photopolymerizable, providing spatiotemporal control over mechanical properties. We evaluated the ability of vinyl methacrylate (VM), allyl methacrylate (AM), and 3-(Acryloyloxy)-2-hydroxypropyl methacrylate (AHPM) to tune hydrogel toughness and Young’s modulus. The crosslinkers were selected due to their heterobifunctionality (vinyl and methacrylate) and similar size and structure to EGDMA, which was shown previously to increase toughness as compared to longer ...


Using The Xenopus Developmental Eye Regrowth Stystem To Distinguish The Role Of Developmental Versus Regenerative Mechanisms, Cindy X. Kha, Dylan J. Guerin, Kelly Ai-Sun Tseng May 2019

Using The Xenopus Developmental Eye Regrowth Stystem To Distinguish The Role Of Developmental Versus Regenerative Mechanisms, Cindy X. Kha, Dylan J. Guerin, Kelly Ai-Sun Tseng

Life Sciences Faculty Publications

A longstanding challenge in regeneration biology is to understand the role of developmental mechanisms in restoring lost or damaged tissues and organs. As these body structures were built during embryogenesis, it is not surprising that a number of developmental mechanisms are also active during regeneration. However, it remains unclear whether developmental mechanisms act similarly or differently during regeneration as compared to development. Since regeneration is studied in the context of mature, differentiated tissues, it is difficult to evaluate comparative studies with developmental processes due to the latter’s highly proliferative environment. We have taken a more direct approach to study ...


Tissue-Specific Genome Editing In Vivo By Microrna-Repressible Anti-Crispr Proteins [Preprint], Jooyoung Lee, Haiwei Mou, Raed Ibraheim, Shun-Qing Liang, Wen Xue, Erik J. Sontheimer May 2019

Tissue-Specific Genome Editing In Vivo By Microrna-Repressible Anti-Crispr Proteins [Preprint], Jooyoung Lee, Haiwei Mou, Raed Ibraheim, Shun-Qing Liang, Wen Xue, Erik J. Sontheimer

University of Massachusetts Medical School Faculty Publications

CRISPR-Cas systems are bacterial adaptive immune pathways that have revolutionized biotechnology and biomedical applications. Despite the potential for human therapeutic development, there are many hurdles that must be overcome before its use in clinical settings. Some clinical safety concerns arise from persistent activity of Cas9 after the desired editing is complete, or from editing activity in unintended cell types or tissues upon in vivo delivery [e.g. by adeno-associated viruses (AAV)]. Although tissue-specific promoters and serotypes with tissue tropisms can be used, suitably compact promoters are not always available for desired cell types, and AAV tissue tropisms are not absolute ...


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable ...


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable ...


Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad May 2019

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing ...


Investigating Virus Clearance Via Ph Inactivation During Biomanufacturing, Wenbo Xu May 2019

Investigating Virus Clearance Via Ph Inactivation During Biomanufacturing, Wenbo Xu

Biomedical Engineering Undergraduate Honors Theses

In the processing of biopharmaceuticals, viral clearance and viral safety are important for the development of monoclonal antibodies. Murine xenotropic leukemia virus (XMuLV) is one of the retroviruses, recommended by Food and Drug Administration (FDA) as a model virus for viral clearance via inactivation from therapeutics derived from Chinese hamster ovary cells (CHO). A robust and effective method was investigated to clear or inactivate endogenous viruses by low pH inactivation. The effects of different conductivity and inactivated time on XMuLV clearance was determined. Acetate buffer was prepared with different conductivity, and 2% XMuLV was spiked into acetate buffer. XMuLV virus ...


Diffuse Reflectance Spectroscopy To Quantify In Vivo Tissue Optical Properties: Applications In Human Epithelium And Subcutaneous Murine Colon Cancer, Gage Joseph Greening May 2019

Diffuse Reflectance Spectroscopy To Quantify In Vivo Tissue Optical Properties: Applications In Human Epithelium And Subcutaneous Murine Colon Cancer, Gage Joseph Greening

Theses and Dissertations

Colorectal cancer is the 4th most common and 2nd deadliest cancer. Problems exist with predicting which patients will respond best to certain therapy regimens. Diffuse reflectance spectroscopy has been suggested as a candidate to optically monitor a patient’s early response to therapy and has been received favorably in experimentally managing other cancers such as breast and skin. In this dissertation, two diffuse reflectance spectroscopy probes were designed: one with a combined high-resolution microendoscopy modality, and one that was optimized for acquiring data from subcutaneous murine tumors. For both probes, percent errors for estimating tissue optical properties (reduced scattering coefficient ...


Developing A Synthetic Model Of The Candida Albicans Cell Wall Using Self-Assembled Monolayers To Host Beta-Glucan As Ligands, Ushnik Ghosh Apr 2019

Developing A Synthetic Model Of The Candida Albicans Cell Wall Using Self-Assembled Monolayers To Host Beta-Glucan As Ligands, Ushnik Ghosh

Biomedical Engineering ETDs

The goal of this investigation is to study mechanisms the immune cell receptor, Dectin-1, uses to identify the fungal cell species, Candida albicans. Dectin-1 identifies extracellular matrix polysaccharides that Candida albicans express known as β-glucan. To study the interaction of β-glucan – Dectin-1 at the nanoscopic scale, the investigators of this project have endeavored to model the Candida albicans cell wall with engineered Self-Assembled Monolayers presenting β-glucan as a ligand for immobilized Dectin-1 receptors. By engineering a simplified ex-vivo model of the Candida albicans cell wall, the investigators of this study aim to gain precise control of the composition and structure ...