Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Mechanics of Materials

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 135

Full-Text Articles in Engineering

Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner Dec 2019

Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner

Mechanical & Materials Engineering Faculty Publications

Ultrasonic scattering in polycrystalline media is directly tied to microstructural features. As a result, modeling efforts of scattering from microstructure have been abundant. The inclusion of beam modeling for the ultrasonic transducers greatly simplified the ability to perform quantitative, fully calibrated experiments. In this article, a theoretical scattering model is generalized to allow for arbitrary source and receiver configurations, while accounting for beam behavior through the total propagation path. This extension elucidates the importance and potential of out-of-plane scattering modes in the context of microstructure characterization. The scattering coefficient is explicitly written for the case of statistical isotropy and ellipsoidal ...


Highly Reactive Energetic Films By Pre-Stressing Nano-Aluminum Particles, Michael N. Bello, Alan M. Williams, Valery I. Levitas, Nobumichi Tamura, Daniel K. Unruh, Juliusz Warzywoda, Michelle L. Pantoya Dec 2019

Highly Reactive Energetic Films By Pre-Stressing Nano-Aluminum Particles, Michael N. Bello, Alan M. Williams, Valery I. Levitas, Nobumichi Tamura, Daniel K. Unruh, Juliusz Warzywoda, Michelle L. Pantoya

Aerospace Engineering Publications

Energetic films were synthesized using stress altered nano-aluminum particles (nAl). The nAl powder was pre-stressed to examine how modified mechanical properties of the fuel particles influenced film reactivity. Pre-stressing conditions varied by quenching rate. Slow and rapid quenching rates induced elevated dilatational strain within the nAl particles that was measured using synchrotron X-ray diffraction (XRD). An analytical model for stress and strain in a nAl core–Al2O3 shell particle that includes creep in the shell and delamination at the core–shell boundary, was developed and used for interpretation of strain measurements. Results show rapid quenching induced 81% delamination at the ...


Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner Dec 2019

Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner

Mechanical & Materials Engineering Faculty Publications

Ultrasonic scattering in polycrystalline media is directly tied to microstructural features. As a result, modeling efforts of scattering from microstructure have been abundant. The inclusion of beam modeling for the ultrasonic transducers greatly simplified the ability to perform quantitative, fully calibrated experiments. In this article, a theoretical scattering model is generalized to allow for arbitrary source and receiver configurations, while accounting for beam behavior through the total propagation path. This extension elucidates the importance and potential of out-of-plane scattering modes in the context of microstructure characterization. The scattering coefficient is explicitly written for the case of statistical isotropy and ellipsoidal ...


Effect Of Annealing On The Contact Resistance Of Aluminum On A P-Type Substrate, Shrey Shah, George Patrick Watson Nov 2019

Effect Of Annealing On The Contact Resistance Of Aluminum On A P-Type Substrate, Shrey Shah, George Patrick Watson

Protocols and Reports

Aluminum contacts are widely used to form both ohmic and rectifying contacts. The process to form these contacts involves annealing, thus it is important to study the effect of annealing on the electrical properties of the contacts. Here, we present a way to measure the contact resistance of aluminum contacts formed on a p-type silicon substrate. It was found the contact resistivity decreased by an average of 18%. It was thus found that annealing at 400°C in a forming gas environment improves the electrical properties of aluminum contacts.


Development Of Engineered Cementitious Composites With Conductive Inclusions For Use In Self-Sensing Applications, Benny Suryanto Dr, Danah Saraireh Ms, Steven Walls Mr, Jaehwan Kim Dr, W John Mccarter Prof Nov 2019

Development Of Engineered Cementitious Composites With Conductive Inclusions For Use In Self-Sensing Applications, Benny Suryanto Dr, Danah Saraireh Ms, Steven Walls Mr, Jaehwan Kim Dr, W John Mccarter Prof

International Conference on Durability of Concrete Structures

The mechanical and a.c. electrical properties of a new varietal of engineered cementitious composite (ECC) incorporating conductive inclusions are presented. Electrical measurements were undertaken over a wide frequency range while curing and when under uniaxial tensile loading to study the influence of ongoing hydration and multiple microcrack formation on the composite electrical impedance. When presented in Nyquist format, the work shows that conductive inclusions reduce the bulk resistance of the composite while enhancing its polarizability, transforming the classic, single-arc bulk response of typical cement-based materials to a two-arc response. The bulk resistance was shown to increase with time and ...


Experimental And Numerical Investigation On The Irregularity Of Carbonation Depth Of Concrete Under Supercritical Condition, Hao Bao Masc, Min Yu Dr., Jianqiao Ye Dr., Lihua Xu Dr., Yin Chi Dr., J Ye Nov 2019

Experimental And Numerical Investigation On The Irregularity Of Carbonation Depth Of Concrete Under Supercritical Condition, Hao Bao Masc, Min Yu Dr., Jianqiao Ye Dr., Lihua Xu Dr., Yin Chi Dr., J Ye

International Conference on Durability of Concrete Structures

The heterogeneity of a cement-based material results in a random spatial distribution of carbonation depth, which may significantly affect the mechanical properties and durability of the material. Currently, there is a lack of both experimental and numerical investigations aiming at a statistical understanding of this important phenomenon. This paper presents both experimental and numerical supercritical carbonation test results of concrete blocks. The random fields of porosity and two-dimension random aggregate model of concrete were proposed for the simulation. The carbonation depths are measured and distributed along the carbonation boundary by the proposed rapid image processing technique, which are then statistically ...


Beyond The Toolpath: Site-Specific Melt Pool Size Control Enables Printing Of Extra-Toolpath Geometry In Laserwire-Based Directed Energy Deposition, Brian T. Gibson, Bradley S. Richardson, Tayler W. Undermann, Lonnie J. Love Oct 2019

Beyond The Toolpath: Site-Specific Melt Pool Size Control Enables Printing Of Extra-Toolpath Geometry In Laserwire-Based Directed Energy Deposition, Brian T. Gibson, Bradley S. Richardson, Tayler W. Undermann, Lonnie J. Love

Mechanical & Materials Engineering Faculty Publications

A variety of techniques have been utilized in metal additive manufacturing (AM) for melt pool size management, including modeling and feed-forward approaches. In a few cases, closed-loop control has been demonstrated. In this research, closed-loop melt pool size control for large-scale, laser wire-based directed energy deposition is demonstrated with a novel modification, i.e., site-specific changes to the controller setpoint were commanded at trigger points, the locations of which were generated by the projection of a secondary geometry onto the primary three-dimensional (3D) printed component geometry. The present work shows that, through this technique, it is possible to print a ...


Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim Oct 2019

Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim

Tool Data

S1805 positive photoresist has been deposited on single crystalline Si wafers using a Suss MicroTec Alta Spray. The influence of flow rate, nozzle speed, pitch and number of passes on the thickness of the photoresist was studied. Results show that the thickness of S1805 is linearly proportional to the flow rate and number of passes, and inversely proportional to the nozzle speed and pitch.


Effect Of Silica Fume In Concrete On Mechanical Properties And Dynamic Behaviors Under Impact Loading, Shijun Zhao, Qing Zhang Oct 2019

Effect Of Silica Fume In Concrete On Mechanical Properties And Dynamic Behaviors Under Impact Loading, Shijun Zhao, Qing Zhang

Mechanical & Materials Engineering Faculty Publications

The effect of silica fume (SF) in concrete on mechanical properties and dynamic behaviors was experimentally studied by split Hopkinson pressure bar (SHPB) device with pulse shaping technique. Three series of concrete with 0, 12%, and 16% SF as a cement replacement by weight were produced firstly. Then the experimental procedure for dynamic tests of concrete specimens with SF under a high loading rate was presented. Considering the mechanical performance and behaviors of the concrete mixtures, those tests were conducted under five different impact velocities. The experimental results clearly show concrete with different levels of SF is a strain-rate sensitive ...


Correction Of Pattern Size Deviations In The Fabrication Of Photomasks Made With A Laser Direct-Writer, Ningzhi Xie, George Patrick Watson Oct 2019

Correction Of Pattern Size Deviations In The Fabrication Of Photomasks Made With A Laser Direct-Writer, Ningzhi Xie, George Patrick Watson

Protocols and Reports

When using Heidelberg DWL66+ laser writer to fabricate the photomask, the pattern feature dimensions may have deviations. These deviations can be caused by the lithography process and the undercut in the metal etch process. The same deviation value of 0.8µm was found to appear in all the patterns independent of the pattern original size and local pattern density. To overcome this universal deviation, a universal bias is suggested to be applied to the original patterns during the data preparation for the lithography process. In order to ensure this pre-exposure bias method can work, both the laser direct-write exposure conditions ...


Mechanical And Corrosion Properties Of Additively Manufactured Cocrfemnni High Entropy Alloy, Michael A. Melia, Jay D. Carroll, Shaun R. Whetten, Saba N. Esmaeely, Jenifer Locke (Warner), Emma White, Iver E. Anderson, Michael Chandross, Joseph R. Michael, Nicolas Argibay, Eric J. Schindelholz, Andrew B. Kustas Oct 2019

Mechanical And Corrosion Properties Of Additively Manufactured Cocrfemnni High Entropy Alloy, Michael A. Melia, Jay D. Carroll, Shaun R. Whetten, Saba N. Esmaeely, Jenifer Locke (Warner), Emma White, Iver E. Anderson, Michael Chandross, Joseph R. Michael, Nicolas Argibay, Eric J. Schindelholz, Andrew B. Kustas

Ames Laboratory Accepted Manuscripts

This study investigates the mechanical and corrosion properties of as-built and annealed equiatomic CoCrFeMnNi alloy produced by laser-based directed energy deposition (DED) Additive Manufacturing (AM). The high cooling rates of DED produced a single-phase, cellular microstructure with cells on the order of 4 μm in diameter and inter-cellular regions that were enriched in Mn and Ni. Annealing created a chemically homogeneous recrystallized microstructure with a high density of annealing twins. The average yield strength of the as-built condition was 424 MPa and exceeded the annealed condition (232 MPa), however; the strain hardening rate was lower for the as-built material stemming ...


System And Method For Sensing Wind Flow Passing Over Complex Terrain, Saleh Nabi, Piyush Grover, Mithu Debnath Sep 2019

System And Method For Sensing Wind Flow Passing Over Complex Terrain, Saleh Nabi, Piyush Grover, Mithu Debnath

Mechanical & Materials Engineering Faculty Publications

A wind flow sensing system determines a first approximation of the velocity field at each of the altitudes by simulating computational fluid dynamics ( CFD ) of the wind flow with operating parameters reducing a cost function of a weighted combination of errors , determines a horizontal derivative of vertical velocity at each of the altitudes from the first approximation of the velocity fields , and determines a second approximation of the velocity fields using geometric relationships between a velocity field for each of the altitudes , projections of the measurements of radial velocities on the three - dimensional axes , and the horizontal derivative of vertical ...


Ideal Maximum Strengths And Defect-Induced Softening In Nanocrystalline-Nanotwinned Metals, Xing Ke, Jianchao Ye, Zhiliang Pan, Jie Geng, Matthew F. Besser, Dongxia Qu, Alfredo Caro, Jaime Marian, Ryan T. Ott, Y. Morris Wang, Frederic Sansoz Sep 2019

Ideal Maximum Strengths And Defect-Induced Softening In Nanocrystalline-Nanotwinned Metals, Xing Ke, Jianchao Ye, Zhiliang Pan, Jie Geng, Matthew F. Besser, Dongxia Qu, Alfredo Caro, Jaime Marian, Ryan T. Ott, Y. Morris Wang, Frederic Sansoz

Ames Laboratory Accepted Manuscripts

Strengthening of metals through nanoscale grain boundaries and coherent twin boundaries is manifested by a maximum strength—a phenomenon known as Hall–Petch breakdown. Different softening mechanisms are considered to occur for nanocrystalline and nanotwinned materials. Here, we report nanocrystalline-nanotwinned Ag materials that exhibit two strength transitions dissimilar from the above mechanisms. Atomistic simulations show three distinct strength regions as twin spacing decreases, delineated by positive Hall–Petch strengthening to grain-boundary-dictated (near-zero Hall–Petch slope) mechanisms and to softening (negative Hall–Petch slope) induced by twin-boundary defects. An ideal maximum strength is reached for a range of twin spacings below ...


Multi-Agent Control System And Method, Piyush Grover, Karthik Elamvazhuthi Sep 2019

Multi-Agent Control System And Method, Piyush Grover, Karthik Elamvazhuthi

Mechanical & Materials Engineering Faculty Publications

Motion of multiple agents with identical non - linear dynamics is controlled to change density of the agents from the initial to the final density . A first control problem is formulated for optimizing a control cost of changing density of the agents from the initial density to the final density subject to dynamics of the agents in a density space . The first control problem , which is a non - linear non - convex problem over a multi - agent control and a density of the agents , is trans formed into a second control problem over the density of the agents and a product of ...


3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan Sep 2019

3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan

Mechanical & Materials Engineering Faculty Publications

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment ...


3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan Sep 2019

3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan

Mechanical & Materials Engineering Faculty Publications

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment ...


Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma Aug 2019

Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma

Mechanical & Materials Engineering Faculty Publications

In advanced fission and fusion reactors, structural materials suffer from high dose irradiation by energetic particles and are subject to severe microstructure damage. He atoms, as a byproduct of the (n) transmutation reaction, could accumulate to form deleterious cavities, which accelerate radiation-induced embrittlement, swelling and surface deterioration, ultimately degrade the service lifetime of reactor materials. Extensive studies have been performed to explore the strategies that can mitigate He ion irradiation damage. Recently, nanostructured materials have received broad attention because they contain abundant interfaces that are efficient sinks for radiation-induced defects. In this review, we summarize and analyze the current understandings ...


Self-Assembly Of Conducting Polymer Nano- And Microstructures For Energy Storage, Luciano Matteo Santino Aug 2019

Self-Assembly Of Conducting Polymer Nano- And Microstructures For Energy Storage, Luciano Matteo Santino

Arts & Sciences Electronic Theses and Dissertations

Plastics are materials composed of many long chains of molecules with repeating subunits; strong interactions between neighboring molecules lead to the material used throughout the world. Plastics are commonly thought to be insulating, in stark contrast to the conductivity of metals. However, certain polymer structures were discovered to exhibit semiconducting properties, the subject of the Nobel Prize in Chemistry in 2000. Conducting polymers have a unique molecular structure with an electronically conjugated backbone, allowing electrons to freely travel both across the chain and in between chains. This work focuses on controlling the kinetics of the reaction between the vapors of ...


The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim Aug 2019

The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim

Mechanical & Materials Engineering Faculty Publications

Mesenchymal stem cells (MSCs) show tremendous promise as a cell source for tissue engineering and regenerative medicine, and are understood to be mechanosensitive to external mechanical environments. In recent years, increasing evidence points to nuclear envelope proteins as a key player in sensing and relaying mechanical signals in MSCs to modulate cellular form, function, and differentiation. Of particular interest is the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex that includes nesprin and SUN. In this review, the way in which cells can sense external mechanical environments through an intact nuclear envelope and LINC complex proteins will be briefly described. Then ...


Development Of Experimental And Finite Element Models To Show Size Effects In The Forming Of Thin Sheet Metals, Jeffrey D. Morris Aug 2019

Development Of Experimental And Finite Element Models To Show Size Effects In The Forming Of Thin Sheet Metals, Jeffrey D. Morris

University of New Orleans Theses and Dissertations

Abstract

An experimental method was developed that demonstrated the size effects in forming thin sheet metals, and a finite element model was developed to predict the effects demonstrated by the experiment. A universal testing machine (UTM) was used to form aluminum and copper of varying thicknesses (less than 1mm) into a hemispherical dome. A stereolithography additive manufacturing technology was used to fabricate the punch and die from a UV curing resin. There was agreement between the experimental and numerical models. The results showed that geometric size effects were significant for both materials, and these effects increased as the thickness of ...


General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr Aug 2019

General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr

University of New Orleans Theses and Dissertations

We will create a class of generalized ellipses and explore their ability to define a distance on a space and generate continuous, periodic functions. Connections between these continuous, periodic functions and the generalizations of trigonometric functions known in the literature shall be established along with connections between these generalized ellipses and some spectrahedral projections onto the plane, more specifically the well-known multifocal ellipses. The superellipse, or Lam\'{e} curve, will be a special case of the generalized ellipse. Applications of these generalized ellipses shall be explored with regards to some one-dimensional systems of classical mechanics. We will adopt the Ramberg-Osgood ...


Optical Direct Detection Of Thermal Vibrations Of Ultralow Stiffness Micro-Nano Structures., Sri Sukanta Chowdhury Aug 2019

Optical Direct Detection Of Thermal Vibrations Of Ultralow Stiffness Micro-Nano Structures., Sri Sukanta Chowdhury

Electronic Theses and Dissertations

A direct detection optical vibrometer is constructed around an 850 nm laser and a quadrant photodetector (QPD). The limit of detection is 0.2 fW which corresponds to a minimum amplitude of 0.1 Å. The vibrometer is used to measure the thermal vibration spectra of low stiffness micromechanical structures have nanometer features. One structure measured is a cantilevered 30 μm diameter glass fiber. Vibration amplitudes as low as 1.1 Å are measured. The thermal vibration spectra show fundamental resonances at 80-250 Hz and a signal to noise ratio (SNR) of 23-55 dB. Young’s modulus of glass in ...


On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang Aug 2019

On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang

Mechanical & Materials Engineering Faculty Publications

We previously reported the finding of a linear correlation between the change of energy dissipation (ΔD) of adhered cells measured with the quartz crystal microbalance with dissipation monitoring (QCM-D) and the level of focal adhesions of the cells. To account for this correlation, we have developed a theoretical framework for assessing the ΔD-response of adhered cells. We rationalized that the mechanical energy of an oscillating QCM-D sensor coupled with a cell monolayer is dissipated through three main processes: the interfacial friction through the dynamic restructuring (formation and rupture) of cell-extracellular matrix (ECM) bonds, the interfacial viscous damping by the liquid ...


Observations Of Shear Stress Effects On Staphylococcus Aureus Biofilm Formation, Erica Sherman, Kenneth W. Bayles, Derek Moormeir, Jennifer Endres, Timothy Wei Jul 2019

Observations Of Shear Stress Effects On Staphylococcus Aureus Biofilm Formation, Erica Sherman, Kenneth W. Bayles, Derek Moormeir, Jennifer Endres, Timothy Wei

Mechanical & Materials Engineering Faculty Publications

Staphylococcus aureus bacteria form biofilms and distinctive microcolony or “tower” structures that facilitate their ability to tolerate antibiotic treatment and to spread within the human body. The formation of microcolonies, which break off, get carried downstream, and serve to initiate biofilms in other parts of the body, is of particular interest here. It is known that flow conditions play a role in the development, dispersion, and propagation of biofilms in general. The influence of flow on microcolony formation and, ultimately, what factors lead to microcolony development are, however, not well understood. The hypothesis being examined is that microcolony structures form ...


Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy Jul 2019

Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy

Mechanical & Materials Engineering Faculty Publications

Additive manufacturing (AM) of metals often results in parts with unfavorable mechanical properties. Laser peening (LP) is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material. This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis. The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process ...


Method For Fabrication Of A Soft-Matter Printed Circuit Board, Carmel Majidi, Tong Lu, Eric J. Markvicka Jul 2019

Method For Fabrication Of A Soft-Matter Printed Circuit Board, Carmel Majidi, Tong Lu, Eric J. Markvicka

Mechanical & Materials Engineering Faculty Publications

A fabrication process for soft - matter printed circuit boards is disclosed in which traces of liquid - phase Ga - In eutectic ( eGaIn ) are patterned with UV laser micromachining ( UVLM ) . The terminals of the elastomer - sealed LM circuit connect to the surface mounted chips through vertically aligned columns of eGaIn - coated ferromagnetic micro spheres that are embedded within an interfacial elastomer layer .


Finite Element Simulation Of Bonded And Mechanically Anchored Shear Interfaces Of Externally Applied Frp Sheets To Concrete And Wood-Concrete Composites, Alaa Al-Sammari Jul 2019

Finite Element Simulation Of Bonded And Mechanically Anchored Shear Interfaces Of Externally Applied Frp Sheets To Concrete And Wood-Concrete Composites, Alaa Al-Sammari

Doctoral Dissertations

Composite construction is prevalent in advanced structural systems where components of different materials are combined in the same structure to improve the performance of strong and economic structural sections. Maintaining continuity between the different structural components to produce monolithic structural behavior is challenging because of differences in the mechanical properties of these materials in terms of stiffness, strength, and ductility. The different components of the composite section are typically joined using adhesives and/or mechanical anchors to produce partial or full composite action. This dissertation discusses two types of shear interfaces intended to result in structural composite behavior. The first ...


Northeastern Species In Hybrid Cross Laminated Timber, Hamid Kaboli Jul 2019

Northeastern Species In Hybrid Cross Laminated Timber, Hamid Kaboli

Doctoral Dissertations

Known in the building industry throughout the world, Cross Laminated Timber (CLT) is a massive timber building material with outstanding structural, fire, and seismic properties. CLT is a cost-competitive, sustainable construction material is a good candidate as a substitute material for concrete, masonry, and steel, in mid-rise and high-rise buildings. CLT is perpendicular layers of dimensional lumbers usually laminated together and forming a massive structural panel. This dissertation explores the viability of utilizing Massachusetts grown Eastern Hemlock and Eastern White Pine in CLT panels as pure or in conjunction with other high-value wood products. 59% of Massachusetts’ lands are covered ...


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and ...


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li Jun 2019

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis ...