Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Subsurface Mimo: A Beamforming Design In Internet Of Underground Things For Digital Agriculture Applications, Abdul Salam Aug 2019

Subsurface Mimo: A Beamforming Design In Internet Of Underground Things For Digital Agriculture Applications, Abdul Salam

Faculty Publications

In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required for the degree of …


Analyzing The Efficiency Of Horizontal Photovoltaic Cells In Various Climate Regions, Parker A. Hines, Torrey J. Wagner, Clay M. Koschnick, Steven J. Schuldt Jun 2019

Analyzing The Efficiency Of Horizontal Photovoltaic Cells In Various Climate Regions, Parker A. Hines, Torrey J. Wagner, Clay M. Koschnick, Steven J. Schuldt

Faculty Publications

This research presents the development of linear regression models to predict horizontal photovoltaic power output. We collected a dataset from 14 global Department of Defense (DoD) installations over a timeframe of one year using an experimental apparatus, resulting in 24,179 usable data points. We developed a linear model to predict power output, which incorporated site-specific weather and geographical characteristics, along with Köppen-Geiger climate classifications in order to determine the effect of adding climate to the model. After performing a Wald test between the full model and a reduced model without Köppen-Geiger climate variables, it was determined that including Köppen-Geiger climate …


Statistical Viability Analysis Of United States Air Force Estimating Cost Factor For Sustainable Construction, Philip A. Ramsey, Diedrich Prigge, Torrey J. Wagner, Alfred E. Thal Jr. May 2019

Statistical Viability Analysis Of United States Air Force Estimating Cost Factor For Sustainable Construction, Philip A. Ramsey, Diedrich Prigge, Torrey J. Wagner, Alfred E. Thal Jr.

Faculty Publications

Varying legislation and executive orders coupled with needs for energy resiliency have led the United States Air Force (USAF) to pursue sustainable construction. However, the limited understanding of initial costs to implement these changes have contributed to poor project cost estimating, resulting in 62 percent of USAF projects experiencing more than 5 percent cost growth. After reviewing 1628 USAF Military Construction (MILCON) construction projects in 922 category codes (CATCODEs), a twotailed t-test for populations with unequal variance was accomplished on the final normalized contract cost for 340 projects in 16 CATCODEs executed between 2002 and 2017. This analysis provides a …


Using Wind And Hydro Power To Sustain The Off-Grid Power Supply For A 50' Cruising Sailboat, Keisha Meyer, Torrey J. Wagner, Jada Williams May 2019

Using Wind And Hydro Power To Sustain The Off-Grid Power Supply For A 50' Cruising Sailboat, Keisha Meyer, Torrey J. Wagner, Jada Williams

Faculty Publications

Cruising sailboats operate with a power requirement modest enough to operate mostly or completely on renewable energy technology sources. Cruisers without renewable energy systems use the vessel’s diesel engine to charge the boat’s batteries; if the systems are operated at anchor, this dramatically decreases the time before the engine needs major overhaul. System users estimate a diesel engine can run approximately 8,000 hours underway before needing major overhaul, whereas operating 500 hours at anchor produces similar wear and tear on engine pistons. Although renewable energy systems have a high initial capital cost, these systems can provide the vessel’s electrical system …


Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah Apr 2019

Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah

Faculty Publications

The extra quantities of wastewater entering the pipes can cause backups that result in sanitary sewer overflows. Urban underground infrastructure monitoring is important for controlling the flow of extraneous water into the pipelines. By combining the wireless underground communications and sensor solutions, the urban underground IoT applications such as real time wastewater and storm water overflow monitoring can be developed. In this paper, the path loss analysis of wireless underground communications in urban underground IoT for wastewater monitoring has been presented. It has been shown that the communication range of up to 4 kilometers can be achieved from an underground …


An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam Apr 2019

An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam

Faculty Publications

Underground sensing and propagation of Signals in the Soil (SitS) medium is an electromagnetic issue. The path loss prediction with higher accuracy is an open research subject in digital agriculture monitoring applications for sensing and communications. The statistical data are predominantly derived from site-specific empirical measurements, which is considered an impediment to universal application. Nevertheless, in the existing literature, statistical approaches have been applied to the SitS channel modeling, where impulse response analysis and the Friis open space transmission formula are employed as the channel modeling tool in different soil types under varying soil moisture conditions at diverse communication distances …


Austere Location Wind Turbine Energy System Analysis, Lukas Cowen, Douglas S. Dudis, Torrey J. Wagner Apr 2019

Austere Location Wind Turbine Energy System Analysis, Lukas Cowen, Douglas S. Dudis, Torrey J. Wagner

Faculty Publications

One promising technology to combat an energy shortage in austere locations is wind energy. In combination with battery storage and generator backup, we explore the feasibility of using a hybrid energy system to reduce the volume of diesel fuel required. Modeling the energy demands in austere locations will enable missions in remote settings to optimize their energy costs, increased their energy resiliency and assure their supply. For a modeled time-series energy requirement that varied between 2.4 MW and 5.1 MW, the optimal wind system size was 9.9 MW of installed wind power paired with a 741 kWh battery. Assuming an …


36% Reduction In Fuel Resupply Using A Hybrid Generator & Battery System For An Austere Location, David J. Chester [*], Torrey J. Wagner, Douglas S. Dudis Mar 2019

36% Reduction In Fuel Resupply Using A Hybrid Generator & Battery System For An Austere Location, David J. Chester [*], Torrey J. Wagner, Douglas S. Dudis

Faculty Publications

The DOD energy policy is to increase energy security resiliency, and mitigate costs in the use and management of energy[1] Forward operating bases (FOBs) are remote, austere base camps that support an operationally defined mission with a limited or no ability to draw from an energy grid and have historically relied on diesel-powered generators for the primary production of energy.[2] Generators are sized to meet a theoretical peak demand, but steady state loads are far below this peak, resulting in under-loaded generators.[3] Under-loaded diesel generators decrease efficiency and increase the need for maintenance, affecting the lifespan of …


A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak Feb 2019

A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak

Faculty Publications

The realization of Internet of Underground Things (IOUT) relies on the establishment of reliable communication links, where the antenna becomes a major design component due to the significant impacts of soil. In this paper, a theoretical model is developed to capture the impacts of change of soil moisture on the return loss, resonant frequency, and bandwidth of a buried dipole antenna. Experiments are conducted in silty clay loam, sandy, and silt loam soil, to characterize the effects of soil, in an indoor testbed and field testbeds. It is shown that at subsurface burial depths (0.1-0.4m), change in soil moisture impacts …