Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Establishment Of A Numerical Model For Sulfate Attacked Concrete Considering Multi-Factors, Shanshan Qin, Dujian Zou, Jun Jiang, Tiejun Liu Nov 2019

Establishment Of A Numerical Model For Sulfate Attacked Concrete Considering Multi-Factors, Shanshan Qin, Dujian Zou, Jun Jiang, Tiejun Liu

International Conference on Durability of Concrete Structures

Sulfate attack is one of the major durability problems of concrete structures, which is manifested by expansive cracks and deterioration of cement paste. In this study, a numerical model is proposed to predict the process of ionic diffusion into concrete under external sulfate attack. The chemical reaction and diffusion processes are considered in this model. Furthermore, the influence of calcium leaching, chemical activity of multi-ions, temperature and changes in porosity are also taken into account. The initial porosity and tortuosity are assumed to be homogeneous in concrete, and the chemical potential gradient is regarded as the driving force for ions …


Effects Of Temperature And Curing Duration On The Stability Of Slag Cements In Combined Chloride-Sulphate Environments, Joseph Onah Ukpata, P. A. M. Basheer, Leon Black Nov 2019

Effects Of Temperature And Curing Duration On The Stability Of Slag Cements In Combined Chloride-Sulphate Environments, Joseph Onah Ukpata, P. A. M. Basheer, Leon Black

International Conference on Durability of Concrete Structures

This experimental study investigates the effects of temperature and curing duration on the stability of slag blended cement systems exposed at 20 °C and 38 °C to combined sodium chloride (30 g/L) – sodium sulphate (3 g/L) solutions. Two slags, designated as slag 1 and 2, having CaO/SiO2 ratios of 1.05 and 0.94, were respectively blended with Portland cement CEM I 52.5R at 30 wt.% replacement level. Mortar prisms and cubes with w/b ratio of 0.5 and binder/aggregate ratio of 1:3 were then prepared for length and mass changes. The samples were cured in lime water for either 7 …


Analysis Of Characteristics Of Parabolic And Parabolocylindrical Hubs, Comparison Of Data Obtained On Them, J.R. Kodirov, S.Sh. Khakimova, Sh.M. Mirzaev Aug 2019

Analysis Of Characteristics Of Parabolic And Parabolocylindrical Hubs, Comparison Of Data Obtained On Them, J.R. Kodirov, S.Sh. Khakimova, Sh.M. Mirzaev

Journal of Tashkent Institute of Railway Engineers

Solar energy technologies can be quickly deployed and have the potential for a global transfer of technology and innovation. In order to manufacture parabolic and parabolic cylindrical concentrators, an analytical review of these two types of solar devices was carried out and, after their creation, experiments were conducted on them in the season of maximum solar radiation. The article also presents data and their comparison for planning subsequent actions of research activities.


Multi-Resolution Spatio-Temporal Change Analyses Of Hydro-Climatological Variables In Association With Large-Scale Oceanic-Atmospheric Climate Signals, Kazi Ali Tamaddun May 2019

Multi-Resolution Spatio-Temporal Change Analyses Of Hydro-Climatological Variables In Association With Large-Scale Oceanic-Atmospheric Climate Signals, Kazi Ali Tamaddun

UNLV Theses, Dissertations, Professional Papers, and Capstones

The primary objective of the work presented in this dissertation was to evaluate the change patterns, i.e., a gradual change known as the trend, and an abrupt change known as the shift, of multiple hydro-climatological variables, namely, streamflow, snow water equivalent (SWE), temperature, precipitation, and potential evapotranspiration (PET), in association with the large-scale oceanic-atmospheric climate signals. Moreover, both observed datasets and modeled simulations were used to evaluate such change patterns to assess the efficacy of the modeled datasets in emulating the observed trends and shifts under the influence of uncertainties and inconsistencies. A secondary objective of this study was to …


Using A Balloon-Launched Unmanned Glider To Validate Real-Time Wrf Modeling, Travis J. Schuyler, S. M. Iman Gohari, Gary Pundsack, Donald Berchoff, Marcelo I. Guzman Apr 2019

Using A Balloon-Launched Unmanned Glider To Validate Real-Time Wrf Modeling, Travis J. Schuyler, S. M. Iman Gohari, Gary Pundsack, Donald Berchoff, Marcelo I. Guzman

Chemistry Faculty Publications

The use of small unmanned aerial systems (sUAS) for meteorological measurements has expanded significantly in recent years. SUAS are efficient platforms for collecting data with high resolution in both space and time, providing opportunities for enhanced atmospheric sampling. Furthermore, advances in mesoscale weather research and forecasting (WRF) modeling and graphical processing unit (GPU) computing have enabled high resolution weather modeling. In this manuscript, a balloon-launched unmanned glider, complete with a suite of sensors to measure atmospheric temperature, pressure, and relative humidity, is deployed for validation of real-time weather models. This work demonstrates the usefulness of sUAS for validating and improving …


Future Changes Of Hydroclimatic Extremes In Western North America Using A Large Ensemble: The Role Of Internal Variability, Mohammad Hasan Mahmoudi Apr 2019

Future Changes Of Hydroclimatic Extremes In Western North America Using A Large Ensemble: The Role Of Internal Variability, Mohammad Hasan Mahmoudi

Electronic Thesis and Dissertation Repository

Increases in the intensity and frequency of extreme events in Western North America (WNA) can cause significant socioeconomic problems and threaten existing infrastructure. In this study we analyze the impacts of climate change on hydroclimatic extremes and assess the role of internal variability over WNA, which collectively drain an area of about 1 million km2. We used gridded observations and downscaled precipitation, maximum and minimum temperature from seven General Circulation Models (GCMs) that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and a large ensemble of CanESM2 model simulations (CanESM2-LE; 50 members) for this analysis. Spatial …


Analysis Of Adhesive Anchorage Systems Under Extreme In-Service Temperature Conditions, Rachel Wang Mar 2019

Analysis Of Adhesive Anchorage Systems Under Extreme In-Service Temperature Conditions, Rachel Wang

Masters Theses

Adhesive anchorage systems have found widespread use in structural applications, including bridge widening, concrete repair and rehabilitation, and barrier retrofitting. Because these applications typically require adhesive anchorage systems to be installed outdoors, the effects of climate conditions and day-to-day temperature fluctuations on adhesive behavior and performance should be considered. The purpose of this thesis is to simulate pullout tests of adhesive anchorage systems for threaded rod and reinforcing bars and to emulate effects under various temperature conditions through the use of finite element analysis. Results from the finite element simulation are then compared to the physical tests conducted at UMass …


Agenator: An Open Source Computer-Controlled Dry Aging System For Beef, Soon Kiat Lau, Felipe Azevedo Ribeiro, Jeyamkondan Subbiah, Chris R. Calkins Jan 2019

Agenator: An Open Source Computer-Controlled Dry Aging System For Beef, Soon Kiat Lau, Felipe Azevedo Ribeiro, Jeyamkondan Subbiah, Chris R. Calkins

Biological Systems Engineering: Papers and Publications

Dry aging of beef is a process where beef is exposed to a controlled environment with the ultimate goal of drying the beef to improve its quality and value. Comprehensive investigations into the effects of various environmental conditions on dry aging are crucial for understanding and optimizing the process, but the lack of affordable equipment focused on data collection makes it difficult to do so. The Agenator was thus developed as an open source system with a suite of features for investigating dry aging such as: measuring and recording relative humidity, temperature, mass, air velocity, and fan rotational speed; precise …


Short Beam Shear Strength Evaluations Of Gfrp Composites: Correlations Through Accelerated And Natural Aging, William Todd Barker Jan 2019

Short Beam Shear Strength Evaluations Of Gfrp Composites: Correlations Through Accelerated And Natural Aging, William Todd Barker

Graduate Theses, Dissertations, and Problem Reports

Fiber Reinforced Polymers (FRP) composites have been materials of interest in replacing or reinforcing steel, wood, and concrete, but lack of understanding of degradation under physical and chemical aging is a main concern. Through many years of research, the understanding of aging or durability of GFRPs has improved. To be able to evaluate aging related degradation rates, an accelerated aging methodology under varying environments is introduced. Accelerated aging is a concept used to age composites in a lab controlled environment under varying pH conditions (2 to 13) and temperatures (~ -20° to +160°F). Once acceleratedly aged testing is completed, Arrhenius …