Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Catalytic Waste Gasification: Water-Gas Shift & Selectivity Of Oxidation For Polyethylene, Mason J. Lang Jan 2019

Catalytic Waste Gasification: Water-Gas Shift & Selectivity Of Oxidation For Polyethylene, Mason J. Lang

ETD Archive

As landfills approach capacity and take up valuable land space, metropolitan areas have realized the need for waste disposal alternatives. Thus, there has been a widespread use of waste incinerators in Europe and the United States [1]; [2]. Although newer technology has made incinerators more efficient, there is an increasing interest in formulating `greener’ alternatives to incinerators. Gasification converts organic and carbonaceous materials into a combination of gaseous products known as “syngas,” or synthetic gas. This process greatly reduces the amount of hazardous emissions. The syngas produced by gasifiers has a wide range of uses, including their conversion into diesel, …


Adsorption Induced Solid Phase Transition Of Mil-53(Al), Rushik G. Bandodkar Jan 2019

Adsorption Induced Solid Phase Transition Of Mil-53(Al), Rushik G. Bandodkar

ETD Archive

Metal organic frameworks (MOFs) are nano-porous solids with potential applications in a wide range of fields including gas separation and catalysis. A number of metal organic frameworks show structural transformation and exceptional flexibility on changing the temperature, pressure and adsorption of certain guest molecules. On the contrary, most of the porous solids like zeolites and activated carbon used in applications are rigid. The structural flexibility makes MOF materials very interesting to study and show promise in applications such as sensors, actuators, membrane separation and adsorptive separation. In this study, we examine the chemical potential difference (Δμ) of MIL-53 (Al), a …


Measurement Of Red Blood Cell Oxygenation State By Magnetophoresis, Nina A. Smith Jan 2019

Measurement Of Red Blood Cell Oxygenation State By Magnetophoresis, Nina A. Smith

ETD Archive

Magnetophoresis of red blood cells (RBCs) at varying partial pressures of oxygen (pO2) is hypothesized to rejuvenate stored blood to be utilized beyond the FDA regulated 42-day storage time. Magnetophoresis is a particle or cells motion induced by an applied magnetic field in a viscous media. The average magnetophoretic mobility of an oxygenated RBC is -0.126x10-6 mm3-s/kg, and a deoxygenated RBC is 3.66x10-6 mm3-s/kg, presenting magnetophoresis as a resource for RBC rejuvenation in hopes of storing it longer than 42 days. The main objective of this paper was to determine if controlling the pO2 within an RBC suspension, can singly- …